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Abstract 18 

Most AI models for disease prediction are difficult to integrate into clinical practice due to their complexity and 19 

lack of interpretability. There is a critical need for accurate, self-interpretable models that align with clinical 20 

reasoning and minimize cognitive burden for physicians. This study aims to develop a robust and trustable disease 21 

prediction model that overcomes this hurdle. To counteract the potential bias introduced by a limited number of 22 

participating physicians, we design a new bibliometric statistic metric to extract medical domain knowledge 23 

through PubMed at the National Library of Medicine and identify lab variables that are widely accepted as risk 24 

factors for the disease.  Then, a novel elaborative learning approach is proposed to account for human cognitive 25 

limitations in processing information to ensure the usability of the model by physicians. The disease of focus in 26 

this study is diabetic retinopathy, a potentially sight-threatening complication of diabetes. The study demonstrates 27 

a 96.65% accuracy and a 96.60% F1-score in predicting diabetic retinopathy. This is accomplished using only 28 

eight features that align with the medical domain knowledge, indicating the model's efficacy in identifying the 29 

disease. The model's good performance underscores its potential as a screening tool for primary care physicians, 30 

specifically for conditions like diabetic retinopathy, where early detection is critical. The eight variables also 31 

comply with the human cognitive limit to digest information simultaneously. This research offers a promising 32 

direction for using AI in healthcare, particularly in disease detection. It presents a scalable approach for 33 

implementing robust and trustable AI for other diseases. 34 

1. Introduction 35 

Although there has been an increase in studies using machine learning (ML) for disease prediction, their 36 

implementation in routine clinical practice is still limited. Most AI-based tools that have received approval from 37 

the U.S. Food and Drug Administration (FDA) are primarily focused on radiology and image-based diagnostics, 38 

with little adoption in non-imaging primary care environments. A key barrier to clinical adoption is the lack of 39 

trust, particularly from physicians, due to the high-stakes nature of medical decision-making. Clinicians are 40 

expected to make critical decisions and need models that provide accurate predictions along with clear and 41 

understandable reasoning. While recent advances in explainable AI (XAI), such as attention maps and feature 42 

attribution tools, have improved post-hoc explanation capabilities, they often fail to bridge the gap in clinician-43 

facing interpretability, that is, the ability for physicians to directly validate and comprehend model decisions 44 

without relying on external interpretation tools. In this study, we emphasize self-interpretable models, where the 45 

logic and decision pathway are inherently understandable. 46 

We adopted the model to be self-interpretable to support transparency and alignment with clinical reasoning. The 47 

model relies on a small set of routinely collected, medically validated features and leverages domain knowledge 48 

through a structured selection process. This design aims to reduce cognitive burden and improve the model’s 49 



potential usability in real-world settings. Importantly, we demonstrate that this simplified, interpretable approach 50 

achieves strong predictive performance, showing that high accuracy and interpretability need not be mutually 51 

exclusive. Incorporating medical domain knowledge into ML models for healthcare presents a major challenge. 52 

Physicians who will ultimately employ these models are often occupied with their daily responsibilities, leaving 53 

them with limited bandwidth to actively engage in research efforts or provide feedback on the explainability of 54 

the AI models. The small number of participating physicians is insufficient to adequately represent the entire 55 

medical domain.  56 

A comprehensive strategy will be employed to achieve an accountable disease prediction model. First, we design 57 

a new bibliometric statistic metric to extract medical domain knowledge through PubMed at National Library of 58 

Medicine and identify lab variables that are widely accepted as risk factors for the disease. This counteracts the 59 

potential bias introduced by a limited number of participating physicians. This new metric offers a comprehensive 60 

and in-depth assessment of each variable by incorporating various aspects, including the term frequency in the 61 

documents, the number of citations received by the document, citation practices in the field, and the age of the 62 

document. Second, we designed a novel ML framework inspired by elaborative learning, a cognitive learning 63 

approach to improve understanding (Levin, 1988). This method encourages learners (the machine learning model) 64 

to link new data with prior knowledge, resulting in a more in-depth comprehension of the historical information.  65 

2. Literature Review 66 

The focus of this paper is diabetic retinopathy (DR), a complication of diabetes that affects small blood vessels. It 67 

is the most common cause of vision loss among diabetic patients and is the leading cause of blindness in 68 

American adults (Flaxel et al., 2020). In 2020, 9.5 million Americans were affected by diabetic retinopathy (DR), 69 

and this number is anticipated to rise to 16 million by 2050, with 3.4 million individuals at risk of blindness ( 70 

National Diabetes Statistics Report, 2020). Almost all patients with type 1 diabetes and over 60% of patients with 71 

type 2 diabetes develop diabetic retinopathy (DR) after 20 years (American Diabetes Association, 2023).  72 

In spite of the widespread occurrence of diabetic retinopathy (DR), adherence to the advised yearly eye exams is 73 

disturbingly low at approximately 43% (Fisher et al., 2016). Consequently, about 25% of DR patients and 19% 74 

(Kovarik et al., 2016) with potentially severe DR remains unidentified. Many individuals with diabetes do not 75 

pursue necessary medical evaluations since DR often shows no symptoms in its early phases, even though 76 

significant pathology may already be present. Diabetic retinopathy (DR) is treatable, but vision loss cannot be 77 

reversed. Early detection of DR can help reduce the need for costly treatments, such as vitrectomy surgery, for 78 

many patients in advanced stages of the disease. Additionally, the availability of ophthalmologists and necessary 79 

diagnostic equipment is mainly concentrated in urban centers, further limiting access to essential eye care for 80 

diabetic individuals in rural areas. 81 



The rising prevalence of diabetes, combined with challenges in accessing eye exams, underscores the urgent need 82 

for affordable and accessible tools for diabetic retinopathy (DR) detection that do not rely on specialized 83 

equipment. Our goal is to develop an artificial intelligence (AI) tool that utilizes comorbidity data and routine 84 

laboratory results from the primary care visits of diabetic patients for screening, detection, and prevention of DR. 85 

This tool will empower primary care physicians (PCPs) to evaluate the risk of DR in their patients, recommend 86 

necessary eye exams, and establish tailored screening intervals for those at risk. Consequently, patients with 87 

asymptomatic DR can be treated effectively in the early stages, preventing vision loss. Our approach is cost-88 

effective and widely available because the data needed already exist for most diabetic patients. 89 

Several studies have shown that early diagnosis is crucial to improving DR patient outcomes (Mersha et al., 2022; 90 

Mrugacz et al., 2021; Ribeiro et al., 2016; Ting et al., 2017; Yau et al., 2012). For example, Yau et al. revealed that 91 

early management greatly lowers the probability of eyesight loss in diabetes individuals (Yau et al., 2012). The 92 

difficulty is in the plethora of variables that might impact the start and course of diabetic retinopathy, such as 93 

blood sugar levels, blood pressure, lipid profiles, and numerous demographic factors. Machine learning has 94 

emerged as a powerful method for unlocking the predictive power contained within these many factors. Ting et al. 95 

showed the power of machine learning methods, such as deep learning neural networks, in harnessing these 96 

characteristics to predict diabetic retinopathy accurately (Ting et al., 2017). This demonstrates machine learning's 97 

transformational potential in changing the early diagnosis of diabetic retinopathy, a breakthrough with far-98 

reaching consequences for public health and patient care. 99 

The machine learning models that can produce both high-quality and intelligible predictions are demanded by 100 

healthcare practitioners (Arbelaez Ossa et al., 2022; Caruana et al., 2015; Lee & Yoon, 2021; Lundberg et al., 101 

2018; Rajkomar et al., 2018; Shailaja et al., 2018; Westerlund et al., 2021). Rajkomar et al. have shown the 102 

benefits of interpretable models in clinical settings, notably when dealing with EHRs and patient outcome 103 

prediction (Rajkomar et al., 2018). Caruana et al. emphasized the importance of model interpretability in medical 104 

risk prediction, highlighting the necessity to balance complexity and transparency (Caruana et al., 2015). Shailaja 105 

et al. have examined the influence of explainable ML models in radiology, where interpretability is critical in 106 

diagnosing medical imaging data (Shailaja et al., 2018). This research highlights the need to provide healthcare 107 

practitioners with models that provide detailed explanations for their predictions. 108 

There is an increasing amount of research on the model explainability in the healthcare domain recently. Markus, 109 

Kors, and Rijnbeek stressed the importance of designing AI systems with explainability at their core to foster trust 110 

among clinicians, and they proposed a comprehensive framework for selecting between different explainable AI 111 

methodologies (Markus et al., 2021). Similarly, Wang and Yin found that the effectiveness of explanations in AI-112 

assisted decisions greatly depends on the individual's domain expertise, with certain types of explanations, such as 113 

feature contribution, enhancing understanding, and trust in more knowledgeable users (X. Wang & Yin, 2021). 114 



Amann et al. highlight the nuanced debate around the necessity of explainability in clinical decision support 115 

systems, suggesting that its value is contingent upon various factors, including technical feasibility and the 116 

specific context of use (Amann et al., 2022).  117 

However, making the model explainable does not come without a cost. Holzinger et al. addressed the "black box" 118 

problem, emphasizing the difficulties in comprehending the inner workings of sophisticated ML algorithms even 119 

though they outperform others (Holzinger et al., 2019).  Abedin presents strategies to sacrifice the model 120 

performance to improve its trustworthiness (Abedin, 2021).  121 

In short, the focus of most research is either increasing the model performance or maintaining the interpretability. 122 

Very few of them aim for the two objectives simultaneously, which is needed to make our prediction model 123 

adaptable by the end user. Our study model framework prioritizes interpretable output while maintaining 124 

prediction quality, encouraging trust as needed for incorporation into clinical decision-making processes. 125 

Furthermore, the human ability to comprehend information presents another challenge in establishing confidence 126 

in machine learning (ML) models, particularly in the context of complicated healthcare predictions. Miller's 127 

landmark study from 1956 shed light on human cognitive limitations, indicating that individuals can successfully 128 

organize and grasp just around seven variables at once, give or take two, depending on their cognitive ability 129 

(Miller, 1956). This fundamental insight highlights the difficulty in communicating complicated ML model results 130 

to healthcare practitioners in an understandable way. Aside from these cognitive limits, validating model 131 

predictions against known medical knowledge is critical for creating trust. Wang et al. have shown the relevance 132 

of correlating ML predictions with existing medical expertise, as such validation not only improves the model's 133 

credibility but also allows clinicians to interpret and accept the predictions. This aspect has also not been 134 

implemented yet in any research on making a disease prediction model (F. Wang et al., 2019).  In this study, we 135 

aim to address the gap between human cognitive limitations and the need for validation from existing domain 136 

knowledge. We will consider both of these factors as essential elements in assessing the performance and 137 

reliability of machine learning models for disease prediction. 138 

3. Methods and Materials 139 

3.1. The data set. 140 

We used data from the Cerner Health Facts Data Warehouse. The study cohort includes diabetic patients aged 18 141 

to 65. Patients with diabetes were identified using ICD-9-CM and ICD-10-CM diagnosis codes (250.x, E10.x, and 142 

E11.x). Diabetic retinopathy (DR) cases were flagged based on diagnosis codes 362.0x, E10.31x–E10.35x, or 143 

E11.31x–E11.35x; all others were classified as non-DR (control) patients. Data preparation included standard 144 



preprocessing steps such as cleaning, merging, and imputing. Lab patient data with high levels of missing data or 145 

deemed irrelevant to DR prediction were excluded, resulting in a final dataset of 97,786 patients. 146 

Gender distribution in this final cohort was 57.06% female, 42.91% male, and 0.03% unknown. Racial 147 

demographics were 62.66% Caucasian, 19.71% African American, 7.85% Other, 3.29% Asian, 3.08% Biracial, 148 

1.49% Hispanic, 1.07% Native American, 0.84% Middle Eastern Indian, and 0.01% Pacific Islander. These 149 

distributions reflect the heterogeneity of patients across diverse clinical sites nationwide, enhancing the model’s 150 

potential generalizability in real-world primary care environments. 151 

3.2. Elaborative Learning Framework.  152 

To build the physician’s trust in the machine learning model, we need to ensure that it is interpretable and ‘easy’ 153 

for humans to digest. For this purpose, a novel elaborative learning framework is developed. 154 

 155 

Figure 1. Novel elaborative machine learning framework 156 

Elaborative learning is a cognitive learning approach that utilizes the process of elaboration to improve memory 157 

retention and understanding (Willingham, 2013). This method encourages learners to link new data-driven 158 

information with prior knowledge. Learners must develop a connection by integrating new information with past 159 

knowledge and, by the end, construct the summarization of the comprehensive knowledge. In our framework, the 160 

ML model, as the learners, needs to be exposed to previous knowledge, which is the medical domain knowledge 161 

in this case. The process of linking this domain knowledge is split into two main steps ([1] and [2] in Figure 1): 162 

extracting the knowledge and embedding the knowledge into the ML model. The next step is to verify if the 163 

model can provide a good comprehension of learning from the data and domain knowledge by providing an 164 

interpretable decision to the human as the evaluator. Thus, we proposed to consider the human cognitive 165 

limitation ([3] in Figure 1) in making the summarization. Therefore, the user, as a human collaborator/evaluator, 166 



could be sure of the model learning comprehension and the ability to generate robust predictions. In the end, it 167 

will build the trust that is necessary for the health-related decision-making process. 168 

3.3. Domain Knowledge Extraction (TF-RCR).  169 

We will incorporate medical domain knowledge in feature selection to instill confidence in the model's prediction 170 

powers. Variables mentioned frequently in medical journals will be given high priority in the ML model. The 171 

hypothesis is that physicians are familiar with the variables whose associations with the disease have been 172 

extensively examined in medical journals. Thus, they will have more confidence about the predictions if the 173 

model is built on those variables. 174 

We conducted a structured literature search on PubMed. Articles were retrieved using the keywords “diabetic 175 

retinopathy,” “predict,” “factor,” and “determine,” with filters applied to include only clinical studies published 176 

between 1990 and 2023. This search yielded a corpus of 13,002 articles, which were subsequently used in the 177 

calculation of the TF-RCR (Term Frequency – Relative Citation Ratio) metric. This approach was designed to 178 

prioritize features that are both frequently studied and highly cited, ensuring relevance and influence within the 179 

medical literature. 180 

The first component is Term Frequency (TF). It comes from the TF/IDF (Term Frequency-Inverse Document 181 

Frequency) metric. TF/IDF is a foundational and extensively used methodology in text mining for measuring the 182 

word's relevance within a corpus. This strategy is based on the idea that a term's relevance to a document is 183 

determined by both its frequency inside that document (Term Frequency) and its uniqueness throughout the entire 184 

corpus (Inverse Document Frequency). TF itself is the count of times a word appears in a document. It measures 185 

the importance of terms based on their contextual relevance, as demonstrated by Salton and Buckley [12], making 186 

it an indispensable tool in a variety of text-mining applications such as information retrieval, document 187 

classification, and sentiment analysis. 188 

Research Citation Ratio (RCR) is a bibliometric statistic to assess the relative influence of a scientific work. It is 189 

calculated by dividing a paper's citation number by the predicted number of citations based on the journal's 190 

citation pattern. It takes into account aspects such as the field's citation practices and the paper's publication age to 191 

offer a more thorough assessment of a paper's impact (Hutchins et al., 2016). RCR has gained popularity in 192 

academia because of its capacity to account for various citation standards across fields and historical periods, 193 

making it a powerful tool for measuring research impact more holistically. 194 

TF-RCR = 𝑇𝐹 × 𝑅𝐶𝑅           (1) 195 

In Equation (1), we design the TF-RCR metric by multiplying these two factors to measure and rank the 196 

importance of the variables in the domain. We adopted a multiplicative combination of term frequency (TF) and 197 



relative citation ratio (RCR) to form the TF-RCR metric, as it provides a simple yet effective way to jointly 198 

capture the relevance and impact of medical terms in the literature. TF reflects how frequently a given variable is 199 

discussed in the diabetic retinopathy context, while RCR indicates the scientific influence of the publications 200 

mentioning that variable. By multiplying TF and RCR, the metric naturally emphasizes features that are both 201 

widely discussed and found in high-impact literature, ensuring alignment with both volume and quality of clinical 202 

discourse. In contrast, a weighted sum could diminish the relative importance of either dimension and may not 203 

sufficiently penalize features that are frequent in low-impact studies or rare in highly cited work. The 204 

multiplicative form also maintains scale sensitivity, making it easier to differentiate top-ranked variables, which is 205 

critical for feature selection under interpretability constraints. 206 

Algorithm 1. Z-Score Data Normalization 
 Input: 
   - data: an array or dataset 
 Output: 
   - normalized_data: an array with CDF values for each data point 

 Procedure: 

1    for each data point in data: 

2         Z-Score = (data point - Mean(data)) / StandardDeviation(data) 

3         CDF_value = Calculate_Standard_Normal_CDF(Z-Score) 

4         Add CDF_value to normalized_data 

5    return normalized_data 

 207 

We normalized the metrics using the commonly used Z-score normalization technique. The transformation helps 208 

to normalize the deviation of the metric as the Term frequency becomes extremely big due to the variable counts 209 

in the corpus. 210 

3.4. Human Cognitive Capability Limitation.  211 

Miller's theory on human cognitive capacity limitations states that most individuals can efficiently comprehend a 212 

maximum of seven variables at a time, with a variance plus or minus two (Miller, 1956). 213 

𝐻𝐶𝐶𝐿(𝑥) = {
1
7

𝑥

     𝑥 ≤ 7
     𝑥 > 7

    𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 #𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠      (2) 214 

Let x be the number of selected features; we calculate the interpretability score with equation (2) to account for 215 

this limitation. The maximum score is obtained when the number of features is fewer than or equal to seven. As 216 

the number of features increases, the score gradually decreases, approaching 0. 217 

3.5. Modified Feature Selection (Adaptive RFE). 218 



Recursive Feature Elimination (RFE) is a feature selection approach frequently used in ML to reduce dataset 219 

complexity. RFE works by repeatedly deleting the least essential features from the dataset, limiting the collection 220 

of predictors to those most influential in explaining the target variable. This procedure is repeated iteratively, with 221 

each iteration training the model on a smaller collection of features and judging their relevance using a different 222 

estimator. The least significant features are trimmed until the required features are reached or a preset stopping 223 

condition is reached (Guyon et al., 2002). 224 

We designed a 𝜑 metric to replace accuracy as the determinant metric in choosing the number of features to be 225 

adopted into the model. The 𝜑 is constructed by multiplying accuracy and the HCCL metric, as both metrics range 226 

between 0 and 1. In adaptive RFE, Δ𝜑 is different between the current 𝜑 and the previous 𝜑, where the number of 227 

selected features is one more compared to the current step. The stopping rule for the RFE loop is updated, and the 228 

termination is done if the Δ𝜑 is a threshold that is set at the beginning of the experiment. This threshold is 229 

adjusted based on user preferences and how many additional features are allowed. This condition makes our 230 

framework customizable to human preferences instead of forcing the user to accept whatever the ML model 231 

considers optimal.  232 

 233 

Algorithm 2. Adaptive Recursive Feature Elimination 
 Input:  
 - X: The input matrix (n_samples, n_features). 
 - y: The target variable. 
 - estimator: The machine learning model to be used. 
 - normalized_TF-RCR: The domain knowledge feature importance score 
 - 𝜑_treshold: The desired level of interpretability 
 Output: 
 - selected_features: The indices of The selected features. 
 Procedure: 

1     if n_features_to_select == 1: 

2         best_feature = select_best_feature(X, y, estimator) 

3         return [best_feature] 

4     else: 

5         current_best_feature = None 

6         previous_𝜑 = -inf 

7         for feature in range(n_features): 

8             if feature is not in selected_features: 

9                 new_X = remove_feature(X, feature) 

10 
                remaining_features = RFE(new_X, y, estimator, normalized_TF-RCR, n_features_to_select - 

1) 

11                 estimator.fit(new_X[:, remaining_features], y) 



12                 HCCL(n_features_to_select-1) = {
1
7

n_features_to_select−1

     n_features_to_select − 1 ≤ 7
     n_features_to_select − 1 > 7

 

13                 𝜑 = evaluate(estimator, new_X[:, remaining_features], y)*HCCL 

14                 Δ𝜑 = 𝜑 - previous_𝜑 

15                 if Δ𝜑 > 𝜑_treshold : 

16                     previous_𝜑 = 𝜑 

17                     current_best_feature = feature 

18         selected_features.append(current_best_feature) 

19         return selected_features 

 234 

 235 

Figure 2. The experiment set-up. (in this setup, we adopted the bootstrapping technique in the testing set)  236 

3.6. Experimental Design.  237 

The experimental setup carefully divides the dataset to facilitate strong model development and unbiased 238 

evaluation. Initially, 80% of the dataset is allocated for training and validation, while the remaining 20% is 239 

reserved for final testing and remains unchanged throughout the model-building process. This separation method 240 

guarantees that the test data is entirely distinct from the training and validation sets, enabling a meaningful 241 

assessment of the model's ability to generalize to unknown data. 242 

To achieve greater granularity in the training and validation processes, the original dataset is divided into two 243 

subsets: 64% for training and 16% for validation. This internal validation set is essential for fine-tuning model 244 

hyperparameters and monitoring training progress. Within the training subset, we implement a 5-fold cross-245 

validation procedure to minimize any biases in model assessment. This involves splitting the training data into 246 

five equally sized folds, with each fold serving as the validation set in turn, while the remaining folds are used for 247 

training. This iterative procedure is repeated five times, with each fold acting as the validation set once. As a 248 

result, this data partitioning approach rigorously evaluates the model's performance, considering both training and 249 



validation dynamics. Additionally, it preserves an independent and untouched test set for the final evaluation, in 250 

line with best practices in machine learning experimentation. 251 

To test the robustness of the model, we employed a bootstrapping mechanism. Bootstrapping is a resampling 252 

approach commonly used in statistical analysis and machine learning to evaluate the robustness and variability of 253 

estimators or models. The foundational bootstrap techniques by Efron and Tibshirani gives a complete 254 

presentation of the methodology, explaining its foundations and demonstrating its effectiveness across diverse 255 

domains (Tibshirani, 1994). The method works by continually pulling random samples from the original dataset 256 

with replacement, essentially producing many simulated datasets of the same size as the original. Over several 257 

cycles, these resampled datasets are utilized to estimate the means and confidence interval of prediction 258 

performance measures. By capturing the variability in the data, bootstrapping provides valuable insights into the 259 

stability of the machine learning model's distribution. 260 

3.7. Model Performance Metrics.  261 

In the medical domain, predictive model evaluation frequently relies on a set of performance criteria that are 262 

particularly customized to suit the unique difficulties and goals of healthcare applications. Accuracy, sensitivity, 263 

specificity, true positive rate (TPR), negative predictive value (NPV), and F1-score are some of the most often 264 

used measures. Accuracy, which represents the proportion of properly categorized cases among all occurrences, is 265 

a key indicator of a model's overall accuracy. Sensitivity, also known as the true positive rate, assesses a model's 266 

ability to properly detect positive cases, which is especially important in situations where false negatives might 267 

have profound implications. Specificity, often known as the true negative rate, measures a model's ability to 268 

correctly identify negative situations. These measures are critical for thoroughly evaluating medical model 269 

diagnostic performance because they provide insight into both the ability to discover actual positive cases and the 270 

ability to avoid false alarms. The F1-score, which takes into account both accuracy and recall, gives a balanced 271 

assessment of a model's performance, which is especially useful when class distribution is skewed. As described 272 

in the literature, particularly the work of (Willingham, 2013), these metrics together serve as key tools in 273 

measuring the usefulness and dependability of machine learning models in medical decision-making. 274 

 275 

4. Results and Discussion 276 

4.1. Domain Knowledge Extraction.  277 

To extract the existing domain knowledge, we employed a text-mining approach. We measure the importance of 278 

each variable based on its term frequency (TF) and the Relative Citation Rate (RCR). Figure 3 displays the initial 279 

step of extracting domain knowledge and converting it into importance scores for the variables. We've presented 280 



two ranking systems. The first, on the left, only considers the importance of the variable without factoring in the 281 

publication's importance to the overall domain knowledge. On the other hand, the one on the right implements our 282 

custom metric (TF-RCR) to level the importance of each publication and its contribution to the domain 283 

knowledge. The benefit of using TF-RCR instead of TF only is the ability to incorporate the quality of the 284 

published article into the variable ranking. The results show no significant differences, indicating that the 285 

importance of the variable reaches a consensus. 286 

4.2. Machine Learning Models.  287 

 288 

Figure 3. Model ablation result. 289 

Our experimental study focused on five distinct regression or tree-based models: Logistic Regression, Decision 290 

Trees, Random Forests, Gradient-Boosting Trees, and Extreme Gradient-Boosting Trees (XGBoost). Those five 291 

models are selected because they have higher interpretability than neural-network-based deep learning models. 292 

Model performances are evaluated based on their performance metrics, specifically accuracy and F1-score. As 293 

delineated in Figure 3, the results indicate an outperformance by the XGBoost model in both accuracy and F1-294 

score compared to its counterparts. The figure also shows a significant accuracy and F1-score drop when we used 295 

less than 8 variables for all of the tested models. And vice versa, the metrics do not increase significantly as the 296 

number of variables increases beyond 8.  Notably, XGBoost not only excelled in these metrics but also 297 



demonstrated stability in its performance across various variable sets. This stability is a critical factor in machine 298 

learning applications, as it suggests robustness of the variable set and a reliable prediction. Thus, we utilized 299 

XGBoost to develop our predictive model based on the elaborative learning framework. 300 

4.3. The DR Prediction Model.  301 

Our proposed framework marks a stride towards addressing the challenge of integrating domain knowledge with a 302 

parsimonious yet highly effective model. Our approach culminated in the identification and utilization of a 303 

minimal set of eight predictors, which were carefully chosen to align with existing domain knowledge while also 304 

ensuring high predictive performance. This number, eight, is particularly noteworthy as it represents an optimal 305 

balance between complexity and interpretability. Eight is the number within the interval seven plus minus two as 306 

the approved number for a comprehensible number of variables for humans, thereby facilitating easier 307 

understanding and application in practical scenarios. 308 

The final predictive model was developed using eight features identified through the TF-RCR metric and clinical 309 

relevance criteria: age, glucose, nephropathy (neph), neuropathy (neu), HbA1c, hemoglobin, albumin, and 310 

creatinine. These variables consistently appear across patient records and are commonly used in routine diabetic 311 

monitoring. Their inclusion ensured not only clinical interpretability but also alignment with practical constraints 312 

in real-world deployment. Table 1 presents these features along with their clinical definitions and typical 313 

acquisition frequencies. The model achieved strong performance using only these eight inputs, reinforcing the 314 

potential of a minimal yet informative feature set in supporting early diabetic retinopathy screening. 315 

Table 1. The eight DR predictors 316 

Variable Clinical Definition 
Typical Acquisition 

Frequency 

Normal Range 

Age 
The patient's age is used as a 

non-modifiable risk factor. 

Recorded once; updated 

only as the patient ages. 
n.a. (in years) 

Glucose 

Blood glucose level (mg/dL), 

typically measured fasting or 

randomly to monitor glycemic 

control. 

At every visit, or at least 

every 3 months. 
70–130 [mg/dL] 

Nephropathy 

(Neph) 

Diagnosis or clinical indicator of 

diabetic nephropathy, often 

inferred from abnormal 

albuminuria or eGFR. 

Evaluated annually 

albumin-to-creatinine ratio 

(ACR) and serum 

creatinine. 

0 (1 = positive, 0 = 

negative) 



Variable Clinical Definition 
Typical Acquisition 

Frequency 

Normal Range 

Neuropathy (Neu) 

Diagnosis of diabetic neuropathy 

based on clinical symptoms or 

tests (e.g., monofilament). 

Assessed annually through 

foot exams or symptom 

screening. 

0 (1 = positive, 0 = 

negative) 

HbA1c 

Glycated hemoglobin indicates 

the average blood glucose levels 

over the past 2 to 3 months, 

expressed as a percentage. 

Every 3–6 months, 

depending on glycemic 

control. 

< 6.5% 

Hemoglobin 

The concentration of hemoglobin 

in blood (g/dL) is a key indicator 

of anemia and the oxygen-

carrying capacity of the blood. 

At least annually in 

diabetic patients, more 

often in those with renal 

complications. 

Male: 14–18 g/dL 

Female: 12–16 g/dL 

Albumin 

Serum albumin level (g/dL) 

reflects nutritional status and 

liver/kidney function. 

Typically, every 6–12 

months or with routine 

metabolic panels. 

3.4–5.4 [g/dL] 

Creatinine 

Serum creatinine (mg/dL), used 

to estimate kidney function 

(eGFR). 

At least annually in all 

diabetic patients. 
0.74–1.35 [mg/dL] 

 317 

Our sensitivity analysis shows the robustness and relevance of these eight variables. By contrasting the model's 318 

performance when informed by a comprehensive set of 100% variable rankings derived from the literature against 319 

a configuration where the influence is predominantly data-driven (22.3% literature-informed and 77.7% data-320 

derived), as shown in table 2, we observe a consistency in the selection of these eight variables. This consistency 321 

is not trivial; it indicates that a substantial proportion (77.7%) of the variation in our dataset, which is the source 322 

of our model development, is in concordance with established domain knowledge. Such alignment provides a 323 

substantial boost in confidence regarding the model's applicability and validity, as it implies that the model is not 324 

only data-driven but also grounded in and corroborated by domain-specific expertise. 325 

Table 2. Medical-Literature-Based vs Data-Based feature selection 326 

  Medical Literature 
Combination (22.3% Literature + 

77.7% Data) 
Data Driven 

Features Importance Rank Importance Rank Importance Rank 

age 0.999944 1 0.536082 3 0.999944 11 

glucose 0.977975 2 0.534751 4 0.977975 9 

neph 0.862646 3 0.969369 1 0.862646 1 

neu 0.741787 4 0.587472 2 0.741787 2 



  Medical Literature 
Combination (22.3% Literature + 

77.7% Data) 
Data Driven 

Features Importance Rank Importance Rank Importance Rank 

hba1c 0.502284 5 0.48835 5 0.502284 3 

hemoglobin 0.497377 6 0.44612 6 0.497377 6 

albumin 0.481435 7 0.418853 8 0.481435 14 

creatinine 0.377927 8 0.443007 7 0.377927 4 

sodium 0.370736 9 0.393718 12 0.370736 15 

calcium 0.338984 10 0.385894 15 0.338984 17 

triglyceride 0.330657 11 0.38619 14 0.330657 13 

bilirubin 0.326602 12 0.38309 17 0.326602 18 

rbc 0.323919 13 0.38306 18 0.323919 16 

wbc 0.322088 14 0.400295 10 0.322088 7 

ast 0.321929 15 0.379821 21 0.321929 21 

chloride 0.321089 16 0.38174 19 0.321089 19 

potassium 0.320928 17 0.380954 20 0.320928 20 

hematocrit 0.319857 18 0.418822 9 0.319857 5 

bun 0.318996 19 0.396505 11 0.318996 8 

alt 0.31792 20 0.383887 16 0.31792 12 

anion_gap 0.317293 21 0.387329 13 0.317293 10 

mch 0.317009 22 0.378484 22 0.317009 22 

mchc 0.317009 22 0.378077 23 0.317009 23 

mcv 0.317009 22 0.377621 24 0.317009 24 

 327 

Our model's resilience and performance have been highlighted by its training process, which adopts the 5-fold 328 

cross-validation procedure. Throughout the validation process, we have seen that all performance indicators are 329 

constantly steady at 95%, as shown in Table 3. This degree of consistency attests to the model's ability to uncover 330 

important patterns and generalize from the input data.  331 

Table 3. Model optimization result. 332 

Evaluation Metric Fold #1 Fold #2 Fold #3 Fold #4 Fold #5 Mean Confidence Interval 

Accuracy 0.967 0.963 0.964 0.966 0.964 0.965 0.963 0.967 

Specificity 0.983 0.980 0.978 0.980 0.983 0.981 0.978 0.983 

Sensitivity 0.951 0.947 0.951 0.952 0.945 0.949 0.945 0.953 

AUROC 0.967 0.963 0.964 0.966 0.964 0.965 0.963 0.967 

PPV 0.982 0.979 0.977 0.980 0.982 0.980 0.978 0.983 

NPV 0.953 0.948 0.952 0.953 0.946 0.950 0.947 0.954 

F1 0.966 0.963 0.964 0.966 0.963 0.964 0.962 0.966 

 333 



4.4. Model Robustness.  334 

 335 

Figure 4. Optimum model performance over simulated new instances (using bootstrapped testing data) 336 

All the previous results provide evidence that our optimum model is well-suited to the past data and is supported 337 

by guidance from domain knowledge. However, it will be useless if we cannot support our optimum model to 338 

perform well in predicting future instances. To confirm this notion, the final step of our experiment simulates the 339 

new dataset, and as shown in Figure 4, all performance metrics are above 95% on average. Over a thousand new 340 

instances, the lowest predicting power is above 94%. This implies that our optimum model is robust for predicting 341 

future instances. 342 

Furthermore, Table 4 summarizes the performance of both image-based and non-image-based models for diabetic 343 

retinopathy (DR) prediction. The upper section reports previously published results from retinal image-based 344 

classifiers (Kumar & Madheswaran, 2012), including Support Vector Machine (SVM), Backpropagation Neural 345 

Network (BPN), Adaptive Neuro-Fuzzy Inference System (ANFIS), K-Nearest Neighbors (KNN), and Learning 346 

Vector Quantization (LVQ). These models generally exhibit high sensitivity (ranging from 0.964 to 0.978) but 347 

variable specificity, with values as low as 0.532. While image-based models are well-established in DR screening 348 

and constitute the majority of FDA-approved tools, they depend on specialized imaging infrastructure and clinical 349 

workflows that may not be readily accessible in resource-limited or primary care settings. 350 

The lower section of Table 4 presents results from models trained on structured, laboratory-based tabular data. 351 

These include traditional machine learning algorithms (logistic regression, random forest, XGBoost) and deep 352 



learning architectures (feedforward neural network, Temporal Convolutional Network (TCN)) (Wang et al., 2024), 353 

and a recent self-attentive temporal model (MB-TCN-TC-10). Among these, MB-TCN-TC-10 achieved the 354 

highest accuracy (0.983) and specificity (0.991), although its sensitivity (0.734) was comparatively lower, which 355 

may increase the risk of missed DR cases in clinical screening. 356 

Table 4. Model comparison. 357 

Model Name Accuracy Specificity Sensitivity PPV NPV F1 AUROC 

Image-Based Model (Kumar & Madheswaran, 2012) 

SVM 0.975 0.892 0.978 n.a. n.a. n.a. n.a. 

BPN 0.948 0.674 0.968 n.a. n.a. n.a. n.a. 

ANFIS 0.939 0.532 0.964 n.a. n.a. n.a. n.a. 

KNN 0.948 0.683 0.969 n.a. n.a. n.a. n.a. 

LVQ 0.964 0.807 0.973 n.a. n.a. n.a. n.a. 

Non-Image-Based Model (Wang et al., 2024) 

MB-TCN-TC-10 0.983 0.991 0.734 0.723 0.992 0.728 0.949 

Original TCN 0.972 0.981 0.703 0.539 0.99 0.61 0.893 

Neural network 0.934 0.941 0.719 0.28 0.991 0.403 0.9 

Random forest 0.962 0.97 0.705 0.431 0.99 0.535 0.907 

XGBoost 0.963 0.971 0.708 0.436 0.991 0.54 0.915 

Logistic regression 0.958 0.967 0.692 0.399 0.99 0.506 0.882 

Our Proposed Method 

Elaborative-XGBoost 0.965 0.981 0.949 0.98 0.95 0.964 0.965 

 358 

The proposed Elaborative-XGBoost model achieved a balanced and clinically favorable performance profile, with 359 

an accuracy of 0.965, specificity of 0.981, and sensitivity of 0.949. It also demonstrated strong positive predictive 360 

value (PPV = 0.980), negative predictive value (NPV = 0.950), F1-score (0.964), and AUROC (0.965). Notably, 361 

the model retains a transparent and inherently interpretable structure aligned with clinician reasoning, facilitating 362 

validation and adoption in routine care. While recent advances have improved post-hoc interpretability in deep 363 

models, the capacity of inherently interpretable algorithms to directly support clinician trust and real-time 364 

decision-making remains essential, particularly in high-stakes and resource-constrained environments. 365 

4.5. Model Interpretability.  366 

To illustrate how our model produces interpretable outputs, we provide a representative patient-level explanation 367 

using SHAP (SHapley Additive exPlanations) values. Figure 5a presents a summary plot of SHAP values for the 368 

8-feature model. Each dot represents a SHAP value for a feature and an instance, colored by feature value (red = 369 

high, blue = low). Features like creatinine, hba1c, age, and hemoglobin exhibit the strongest contributions, with 370 

clear patterns indicating that high creatinine and hba1c increase the predicted risk, while low hemoglobin and 371 



higher age tend to reduce it. This visualization helps clinicians understand which features drive the model’s 372 

overall decision-making across the population. 373 

 374 

Figure 5. SHAP explanation for 8 selected features. 375 

In Figure 5b, we provide an individual force plot-style explanation (SHAP waterfall chart) for a single prediction. 376 

This shows how the model’s output is constructed by aggregating the contribution of each feature from the base 377 

value (average model output). For the selected patient, the prediction is decreased primarily due to older age and 378 

low hemoglobin, while moderately elevated albumin contributes a slight increase in risk. This decomposition 379 

offers clinicians a transparent view into why a patient was classified at a particular risk level, without requiring 380 

auxiliary explanation tools. 381 



 382 

Figure 6. SHAP explanation for 24 selected features. 383 

To compare interpretability under cognitive constraints, Figures 6a and 6b replicate the SHAP summary and 384 

individual explanation plots for the full 24-feature model. While performance increased marginally, by less than 385 

1% in AUC, this came at the cost of reduced clarity. As shown in Figure 6a, the expanded feature space introduces 386 

dense overlapping patterns with many low-impact variables, such as WBC, triglyceride, and chloride, making it 387 

difficult to discern the primary drivers of prediction. Figure 6b illustrates a corresponding individual prediction 388 

explanation. Although similar risk drivers, bilirubin and anion gap, still play a role, the influence is now 389 

fragmented across a broader range of features, hindering interpretability. 390 

Overall, the 8-feature model preserves nearly the same predictive performance while offering more concise and 391 

cognitively accessible explanations. This aligns with the goals of our elaborative learning framework, where 392 

interpretability and model transparency are prioritized alongside predictive accuracy. These findings support the 393 

use of constrained, domain-informed feature sets to produce trustable decision support tools in clinical settings. 394 

5. Conclusion 395 

In conclusion, this study has effectively demonstrated the implementation of a novel comprehensive learning 396 

approach tailored to harness medical domain knowledge for enhancing the explainability of AI in detecting 397 

diabetic retinopathy. Achieving an impressive 96.65% accuracy and a 96.60% F1-Score with only eight features, 398 

the model not only adheres to the constraints of human cognitive processing capacities but also seamlessly aligns 399 



with medical expert understanding. This dual achievement underscores the model's potential to serve as an 400 

effective screening tool in primary care settings, where early detection of sight-threatening conditions is crucial. 401 

Furthermore, the use of a limited number of features, each deeply rooted in established medical knowledge, 402 

ensures that the model remains both practical and relevant to everyday clinical practices, bridging the gap 403 

between advanced AI technologies and their real-world clinical applications. 404 

Moreover, the integration of medical domain expertise in the AI model's learning process represents a significant 405 

stride towards overcoming the longstanding barriers of machine learning explainability in clinical settings. The 406 

model's robust performance, coupled with its accountability and transparency, positions it as a reliable and 407 

valuable asset in the medical community. As AI continues to evolve, the methodology adopted in this study offers 408 

a scalable template for developing future disease prediction models that are not only accurate but also 409 

interpretable and user-friendly for medical professionals. This approach paves the way for broader acceptance and 410 

integration of AI technologies in healthcare, ultimately enhancing patient outcomes through more informed and 411 

timely medical decision-making. 412 

Although the dataset used in this study is derived from the CERNER EHR system, which encompasses a wide 413 

network of hospitals and healthcare providers across the United States, we acknowledge that external validation 414 

remains essential to further establish the model’s generalizability. While the current data offers substantial 415 

coverage of diverse patient populations and clinical practices, validating the model on an independent dataset 416 

would allow us to assess its robustness across different institutional settings, data collection protocols, and patient 417 

demographics. We consider this an important direction for future research to ensure broader applicability and 418 

clinical reliability of the proposed framework. Currently, we are in the process to obtain the access to another 419 

reliable large dataset for external validation. 420 

The current study is based on static, cross-sectional laboratory measurements, which may not fully capture the 421 

progression dynamics of diabetic retinopathy (DR). While methods for temporal modeling, like recurrent neural 422 

networks (RNNs) and temporal convolutional networks (TCNs), have proven effective in capturing long-term 423 

trends in biomarkers such as HbA1c, this paper aims to develop models that are straightforward, easy to 424 

understand, and in line with clinical reasoning. Prior work by other members of our research team has explored 425 

such temporal models in greater depth, including a multi-branching TCN with tensor data completion for DR 426 

prediction (Wang et al., 2024) and deep learning on longitudinal EHRs (Chen et al., 2022). While these models 427 

demonstrate strong performance, our current framework achieves comparable predictive accuracy while offering 428 

greater interpretability, which is crucial for clinical adoption. Future extensions of this work may integrate 429 

temporal modeling to enhance personalization and time-sensitive risk assessment, while maintaining the model’s 430 

transparency. 431 
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Abstract 4 
Background: Accurate blood demand forecasting is essential for ensuring an 5 
efficient and reliable blood supply, as each blood component has a limited shelf life. 6 
Inaccurate forecasting can lead to critical shortages during emergencies, putting 7 
patients at risk, or excessive wastage due to unused blood stocks. Addressing these 8 
challenges requires advanced models capable of capturing complex demand 9 
patterns and responding effectively to sudden fluctuations. 10 
Objective: This study aims to enhance blood demand forecasting performance by 11 
leveraging two deep learning techniques, specifically Temporal Convolutional 12 
Network (TCN) and Long Short-Term Memory (LSTM). 13 
Methods: TCN and LSTM are applied to forecast the demand for three blood 14 
components, namely Fresh Frozen Plasma (FFP), Red Blood Cells (RBC), and 15 
Thrombocyte Concentrate (TC). Their performance is compared against traditional 16 
forecasting methods, including ARIMA, XGBoost, and Neural Networks (NN), to 17 
validate their effectiveness. 18 
Results: The results demonstrate that TCN and LSTM consistently outperform 19 
traditional models across all blood components. For FFP, TCN demonstrated the 20 
best performance with an average MAE of 4.594 and an average RMSE of 7.266. For 21 
RBC, LSTM demonstrated the best performance, achieving an average MAE of 22 
12.345 and an average RMSE of 15.221. For TC, LSTM demonstrated the ability to 23 
capture general demand patterns with a lower average MAE of 6.863 and average of 24 
RMSE of 9.028. This result indicates a better overall performance and its strength in 25 
minimizing larger errors and modeling gradual temporal changes. However, both 26 
models show limitations in accurately capturing sudden spikes, suggesting that 27 
further refinement is needed to improve their responsiveness to sudden spikes 28 
without compromising overall forecasting performance. 29 
Conclusions: The findings of this study highlight the potential of deep learning 30 
techniques, particularly Temporal Convolutional Networks (TCN) and Long Short-31 
Term Memory (LSTM), to improve the accuracy of blood demand forecasting. 32 
Compared to traditional and machine learning methods such as ARIMA, artificial 33 
neural networks (ANN), and XGBoost, these models demonstrate superior 34 
performance in capturing complex temporal patterns. Their ability to model 35 
complex temporal dynamics offers a valuable advantage in managing short-lived 36 
medical resources such as blood products. Future research may explore integrate 37 
modeling approaches and address the challenge of extreme demand events. 38 
 39 
Keywords: blood demand; forecasting; Long Short-Term Memory (LSTM); 40 
Temporal Convolutional Network (TCN) 41 



 42 

Introduction 43 
As an important component of the human body, blood plays a vital role in the 44 
anatomical functions that consist of several components, mainly red blood cells, 45 
platelets, and blood plasma.1–3 Red blood cells can help manage hemorrhage and 46 
enhancing oxygen transmission to tissues, fresh frozen plasma can be utilized to 47 
counteract the effects of anticoagulants, platelets use to prevent hemorrhage in 48 
patients with thrombocytopenia, and cryoprecipitate can be used in 49 
hypofibrinogenemia case.3 Given its essential function and the specific roles of each 50 
blood component, efficient blood product management is crucial and needs careful 51 
consideration, particularly in ensuring that supply meets demand during surgeries 52 
or emergency situations.4  53 
 54 
However, managing blood supply presents several challenges. First, excessive blood 55 
orders can lead to inefficiencies in time, resources, and cost, as highlighted by 56 
previous research.5 Second, blood products have maximum shelf-life criteria, 57 
namely Red Blood Cells last around 40 days with platelets having survival up to 7 58 
days after leaving the human body.6,7 Given its perishable nature, accurate demand 59 
forecasting is crucial to minimizing wastage while ensuring a sufficient blood 60 
supply. Furthermore, preventing critical shortage is essential to avoid putting 61 
patients at risk. To address these challenges, prior research has explored various 62 
forecasting methods to manage the uncertainty of blood demand effectively. 63 
 64 
Initially, research focused on time series forecasting models. Shih and Rajendran8 65 
found that traditional time series models, ARIMA, outperformed machine learning 66 
methods in practicing blood demand. Around the same time, Fanoodi et al9 applied 67 
ANN and ARIMA models to forecast daily blood requests, emphasizing the 68 
importance of effective demand forecasting in preventing shortages. 69 
 70 
Subsequent studies introduced machine learning techniques for more accurate 71 
forecasting across different blood components. Moslemi and Attari10 utilized ANN to 72 
predict monthly blood demand based on various blood products and groups. Li et 73 
al11 combined statistical time series modelling, machine learning, and operation 74 
research techniques to optimize red blood cells demand forecasting. Meanwhile, Sun 75 
et al12 applied the XGBoost model to analyze daily and weekly red blood cell 76 
demand, demonstrating improved trend recognition. 77 
 78 
Further advancements focused on enhancing accuracy and addressing demand 79 
uncertainties. Elmir et al13 explored machine learning and time series forecasting 80 
methods to enhance monthly blood demand forecast, improving supply chain 81 
efficiency and reducing waste. More recently, Wang et al14 utilized SARIMAX and 82 
LSTM models to forecast daily blood demand, highlighting the growing importance 83 
of deep learning techniques in this field.  84 
 85 



Unlike red blood cells, platelets pose an even greater challenge in demand 86 
forecasting due to their high cost and extremely short shelf life. Their usage varies 87 
significantly, requiring advanced predictive techniques. To tackle this, Motamedi et 88 
al15 developed an efficient platelet demand forecasting model utilizing ARIMA, 89 
Prophet, Lasso Regression, Random Forest, and LSTM to predict daily platelet 90 
demand. Their study demonstrated that LSTM outperformed other models in 91 
predicting daily platelet demand.     92 
 93 
Prior studies have explored various methods for blood demand forecasting. 94 
However, despite these efforts, the complexity of sequential dependencies and 95 
temporal variations in demand continues to pose a significant challenge. Among the 96 
most promising deep learning models for time series forecasting is Long-Short Term 97 
Memory (LSTM). LSTM is a modified version of Recurrent Neural Networks (RNN) 98 
designed to overcome the “vanishing gradient” problem, which frequently occurs in 99 
RNNs.16 It selectively retains or discard information, allowing it to capture long-100 
term dependencies effectively. These characteristics make LSTM particularly 101 
advantageous for processing, forecasting, and classifying time series data. Compared 102 
to ANN, LSTM has demonstrated superior performance in forecasting tasks.17,18 103 
 104 
While LSTM is widely used for sequential data modeling, Temporal Convolutional 105 
Network (TCN) has emerged as a competitive alternative with superior 106 
performance in some forecasting applications. Unlike LSTM, TCN leverages causal 107 
and dilated convolutions, enabling parallel sequence processing and more efficient 108 
long-range dependency capture. Pei19 found that TCN results in a better 109 
performance than LSTM. Several studies have also demonstrated TCN’s 110 
effectiveness, including Ghimire et al20 in modeling electricity demand uncertainty 111 
and Bernacki21 in air pollution concentrations forecasting. These findings indicate 112 
the potential of leveraging Temporal Convolutional Networks (TCNs) to enhance 113 
performance in time series forecasting, making them a promising approach for 114 
blood demand forecasting. 115 
 116 
Given the strengths of both LSTM and TCN, this study aims to enhance blood 117 
demand forecasting accuracy by leveraging these advanced deep learning 118 
techniques. Rather than merely comparing different methods, this research aims to 119 
leverage the strengths of both LSTM and TCN models to enhance forecasting 120 
performance, focusing on their capabilities to capture temporal dependencies. 121 
Benchmarking against previous models will be conducted to validate their 122 
effectiveness in blood demand forecasting. 123 
 124 

Methods 125 

Material 126 
The data used in this study consist of historical blood demand collected by 127 
Indonesia Red Cross Society or Palang Merah Indonesia, DKI Jakarta from January 128 
2020 until March 2023. There are three main components of blood products 129 



provided by the data, namely Red Blood Cells (RBC) or red blood cells, Fresh Frozen 130 
Plasma (FFP) or Blood Plasma, and Thrombocyte Concentrate (TC) or Platelets. The 131 
data structure consists of dates, blood components, blood types, and the number of 132 
requests. Forecasting models will be made in daily terms for each component with 133 
its blood type (A, B, AB and O) and will be used for comparing each performance. 134 
 135 
Data use was permitted under an official request letter, which served as the formal 136 
authorization for data access and use. The dataset contained no personal or 137 
identifiable information, and is available from the corresponding author upon 138 
reasonable request, subject to approval by the Indonesian Red Cross. 139 

Experiment Design 140 
The data used shows that blood groups with negative rhesus for each component 141 
have intermittent demand patterns with very high demand interval variations. To 142 
avoid high model errors, blood demand data for negative rhesus blood groups is not 143 
used in data processing. No normalization or imputation was applied, as the dataset 144 
was used in its raw form to preserve the original demand patterns required for the 145 
modeling objectives, and the dataset contained no missing value. 146 
 147 
The study focuses on forecasting the demand for three primary blood components: 148 
RBC, FFP, and TC, to get a robust comparison. These components were selected 149 
because they are the most used in transfusions. Furthermore, combining the three 150 
blood components with the four major blood types (A+, B+, AB+, and O+) results in 151 
12 demand models, ensuring comprehensive blood demand scenarios. The design 152 
enables an in-depth analysis of forecasting performance across varying demand on 153 
each component and its type, which can ensure that the results are applicable to 154 
diverse operational conditions in blood management. 155 

Descriptive Statistics 156 
Descriptive statistics were calculated to better understand demand characteristics 157 
for each blood type and component. The metrics reported include the mean, 158 
standard deviation, skewness, kurtosis, minimum, and maximum observed values. 159 
These statistics provide an overview of the central tendency, variability, and 160 
distribution shape of the dataset prior to any further analysis. 161 
 162 
Table 1. Descriptive statistics of blood demand by type and component 163 
 164 

 165 
 166 
Table 1 shows demand variability across blood types and components. RBC and TC 167 
generally have higher standard deviation, skewness, and kurtosis compared to FFP, 168 
indicating more irregular distributions. For example, RBC in type A+ shows the 169 

Blood Type

Blood Component FFP RBC TC FFP RBC TC FFP RBC TC FFP RBC TC

Mean 7.553 7.750 5.858 7.585 6.766 5.680 5.748 6.987 5.627 8.192 6.473 6.02864

Standard Deviation 9.913 24.234 6.633 10.429 19.642 6.595 6.040 13.174 5.088 12.090 21.207 6.90102

Skewness 2.219 5.734 6.471 2.312 5.298 4.881 2.339 3.510 2.739 2.563 6.177 5.20251

Kurtosis 5.070 40.058 98.108 5.597 33.086 36.758 7.552 16.055 13.332 9.346 46.185 42.2089

Minimum 1 1 1 1 1 1 1 1 1 1 1 1
Maximum 65 315 184 80 233 89 50 171 51 141 326 106

A+ B+ AB+ O+



highest variability with standard deviation = 24.234 and extreme kurtosis = 40.058, 170 
with a maximum value of 315, far exceeding its mean of 7.750.  In contrast, FFP 171 
demand across all blood types generally has lower skewness and kurtosis, 172 
suggesting more stable demand patterns. 173 

Forecasting Models 174 

AutoRegressive Integrated Moving Average (ARIMA) 175 
ARIMA is a traditional time series forecasting model that remains widely used due 176 
to its simplicity and interpretability. It performs well when dealing with data that 177 
exhibit clear trends and seasonality, but it faces challenge when dealing with highly 178 
non-linear patterns, requires stationary data, and more suitable for short to 179 
medium-term forecasting than the long-term.22 180 
 181 
Figure 1. ARIMA flow diagram 182 

 183 
 184 
As shown in Figure 1, the ARIMA modeling process begins with a stationarity test. If 185 
the time series is found to be non-stationary, differencing (I) is applied to eliminate 186 
trends and seasonality. The Auto Regressive (AR) component models the 187 
relationship between past and present values using lagged observations, which 188 
refers to previous values in the time series. The Moving Average (MA) component 189 
improves accuracy by considering past forecasting errors. ACF analysis is used to 190 
determine the Moving Average (MA) parameter (q), while PACF analysis helps in 191 
determine the number of lags in Auto Regressive (AR) parameter (p). ARIMA selects 192 
the best combination of AR, I, MA components (commonly referred as p, d, q 193 
parameters) based on AIC/BIC criteria. Once trained, the model predicts future 194 
values based on past values.  195 
 196 
ARIMA can handle linear patterns effectively due to its components. AR captures 197 
linear dependencies, I ensures stationarity, and MA reduces short-term noise. 198 
However, it struggles with non-linear relationships and long-term dependencies. 199 
Alternative models, such as XGBoost, NN, LSTM, and TCN more suitable for 200 
capturing non-linear relationships. 201 
 202 

Extreme Gradient Boosting (XGBoost) 203 
XGBoost is a machine learning algorithm based on gradient boosting decision trees, 204 
which iteratively learn from previous errors to improve performance. It is scalable 205 
and capable of capturing complex non-linear relationships, making it superior to 206 
traditional statistical models in many forecasting tasks.23 207 
 208 
Figure 2. XGBoost structure 209 



 210 
 211 
As illustrated in Figure 2, XGBoost starts by training an initial decision tree as a 212 
weak learner. The residual errors from this first tree are then used to train the next 213 
tree in an iterative process. This approach enables sequential learning, allowing 214 
each tree focus on correcting the of previous one, ultimately leading to optimized 215 
results. To improve generalization and prevent overfitting, XGBoost applies L1/L2 216 
regularization, L1 (Lasso Regression) helps in feature selection and L2 (Ridge 217 
Regression) makes model more stable. For better efficiency, XGBoost leverages 218 
parallel execution and pruning techniques by removing the unnecessary branch 219 
making it much faster in processing the model. In the final step, the ensemble of 220 
trees is combined to generate prediction.  221 
 222 
XGBoost excels in handling large datasets and complex relationships, making it a 223 
powerful alternative to ARIMA. However, since it does not inherently capture 224 
temporal dependencies, additional feature engineering (e.g., lag features) is 225 
required for time series forecasting. While effective, it may not be as robust as 226 
sequential models like LSTM or TCN in capturing long-term dependencies. 227 
 228 

Neural Networks (NN) 229 
Based on structure, neural networks have flexibility and capability in complex 230 
functions, making them effective for capturing non-linear relationships in time 231 
series data. The simplest form, the perceptron neural network, consists of input 232 
neurons, weighted connections, and activation functions. 233 
 234 
Figure 3. Perceptron neural network architecture 235 



 236 
 237 
As shown in Figure 3, the input layer receives values as input features (𝑥𝑗). The 238 
model then applies pre-initialized weights (𝑤𝑗) and biases (𝑏) to adjust the decision 239 
boundary during training. The weighted sum calculation determines how strongly 240 
inputs influence the output, as presented in Equation 1. 241 
 242 

 𝑧 =  ∑ 𝑤𝑗 𝑥𝑗

𝑛

𝑗=1

+ 𝑏 (1) 

 243 
This value is then passed through an activation function (𝑓), which allows the model 244 
to capture non-linear relationships. When receiving input, the neuron applies this 245 
activation function to the signal, introducing nonlinearity to the model.24 Unlike 246 
traditional statistical models, neural networks can process information from 247 
multiple perspectives by utilizing different types of neurons, including feature 248 
extraction neurons, computational neurons (which may undergo dropout for 249 
regularization), and output neurons that generate final predictions (𝑦̂). The learning 250 
rate controls weight adjustments, leading to an iterative weight update process until 251 
convergence. 252 
  253 
Neural networks are effective for pattern recognition due to their ability to process 254 
information from multiple perspectives. However, they process each input 255 
independently and do not retain past information or learn from previous time steps, 256 
making it unable capture time dependencies in sequential data. They also require a 257 
large amount of data for accurate forecasting, need more computational resources, 258 
and may tend to overfit if they not properly used.25 In time series forecasting, more 259 
specialized architectures like LSTM and TCN are preferable, as they are specifically 260 
designed to model sequential patterns and long-term dependencies. 261 
 262 

Long Short-Term Memory (LSTM) 263 
Long Short-Term Memory (LSTM) networks, introduced by Hochreiter and 264 
Schmidhuber in 1997, is a type of Recurrent Neural Network (RNN) designed to 265 



overcome the "vanishing gradient" problem, allowing it to determine which 266 
information should be retained and which should be discarded.16 267 
 268 
Figure 4. LSTM architecture 269 

 270 
 271 
As depicted in Figure 4, LSTM is designed to capture long-term dependencies in 272 
sequential data using three gates including forget gate, input gate, and output gate. 273 
The forget gate determines which information from previous cell state (𝑐𝑡 − 1) 274 
should be discarded. This is achieved by applying a sigmoid activation function (𝜎) 275 
to the previous hidden state (ℎ𝑡 − 1) and current input (𝑥𝑡), generating a forget gate 276 
output (𝑓𝑡) that decides the proportion of information to retain or forget. The 277 
relevant information is then scaled (×) through element wise multiplication with the 278 
previous cell state (𝑐𝑡 − 1). 279 
 280 
The input gate determines which new information should be added to the cell state. 281 
It processes the previous hidden state (ℎ𝑡 − 1) and current input (𝑥𝑡) using a sigmoid 282 
function to generate an input gate output (𝑖𝑡). Additionally, a candidate memory (𝑐̃𝑡) 283 
is produced using tanh activation function, allowing the LSTM to preserve both 284 
positive and negative signals. Before updating the cell state, the element wise 285 
multiplication (×) of the input gate and candidate memory ensures that only the 286 
most relevant information is added. The updated cell state (𝑐𝑡) is then calculated by 287 
adding (+) the scaled previous cell state and the scaled candidate memory, ensuring 288 
relevant patterns or information are retained over time. 289 
 290 
The output gate determines the useful information to pass to the next hidden state 291 
(ℎ𝑡) and final output. This gate applies a sigmoid function (𝜎) to the previous hidden 292 
state (ℎ𝑡 − 1) and current input (𝑥𝑡) to generate the output gate value (𝑜𝑡). The 293 
updated cell state (𝑐𝑡) is carried forward to next time step, to store long term 294 
dependencies. Meanwhile, the final hidden state (ℎ𝑡) is computed by applying tanh 295 
activation function to the updated cell state (𝑐𝑡) and then performing element wise 296 
multiplication (×) with the output gate value (𝑜𝑡). This hidden state serves as the 297 
output of each time step and is passed to the next time step along with the cell state 298 
(𝑐𝑡), which continuously preserves relevant information over time. 299 
 300 
LSTM outperforms simpler models like ARIMA in dealing with long-term 301 
dependencies. It has been widely applied in forecasting applications including 302 
forecast and recognition of text and sound.26 However, as a deep learning model, it 303 



requires a substantial amount of data to achieve reliable results. Additionally, its 304 
sequential nature makes training computationally expensive and limits 305 
parallelization. Compared to TCN, LSTM is challenging to optimize due to its 306 
complex gating mechanism and higher parameter count. The gating mechanism, 307 
forget, input, and output, which regulate the flow of information through the 308 
network. Each gate has its own set of weights and biases, increasing the number of 309 
trainable parameters. While LSTM remains strong choice for sequence modeling, 310 
TCN offers more efficient alternative by enabling parallel computation and 311 
capturing long-term dependencies through dilated convolutions. 312 
 313 

Temporal Convolutional Network (TCN) 314 
TCN is an alternative to LSTM that leverages convolutional layers for sequence 315 
modeling. In several studies, this model outperforms RNN.27 TCN capture the short 316 
and long-term dependencies through dilation and causal convolution. As the 317 
strength of its nature, TCN capable to handle variable-length sequences naturally, 318 
making them versatile for various time-series applications.27 319 
 320 
Figure 5. TCN architecture 321 

 322 
 323 
As depicted in Figure 5, TCN process sequential data by passing the input sequence 324 
𝑥1, 𝑥2, …, 𝑥𝑡 through multiple convolutional layers. Unlike recurrent models, TCN 325 
employ causal convolutions, ensuring that each time step xt only influences the 326 
present and future outputs, effectively preventing information leakage from future 327 
time steps. 328 
 329 
Each convolutional layer applies dilated convolutions to expand the receptive field. 330 
By progressively increasing the dilation rates (e.g., 1, 2, 4, 8), the network capture 331 
patterns over varying temporal scales. This architecture allows the model to process 332 
long sequences efficiently by learning dependencies across both short and long-time 333 
horizons. The convolutional layers transform the input sequence into hidden 334 
representations through a series of operations that maintain the hierarchical 335 
structure of the data.  336 
 337 



The outputs 𝑦̂1, 𝑦̂2, … 𝑦̂𝑡  are generated once the processed information reaches the 338 
output layer. These outputs maintain the sequence structure and dependencies 339 
identified throughout the network. As a result, the outputs reflect the patterns and 340 
relationships learned from the original input sequence. 341 
 342 
TCN is particularly efficient because it allows for parallel computation, unlike LSTMs 343 
that process sequence sequentially. However, in certain cases, LSTM still provides 344 
better accuracy, especially when sequential dependencies are highly complex. While 345 
TCN has shown promising results, it is less widely adopted in forecasting compared 346 
to LSTM. This paper aims to evaluate its performance in real-world applications to 347 
assess its effectiveness in capturing temporal dependencies. 348 
 349 

Hyperparameter Selection 350 
Hyperparameters for each model were tuned to achieve their best performance. 351 
Each model applied different tuning approaches, adjusted to the characteristics of 352 
its respective algorithm. 353 

AutoRegressive Integrated Moving Average (ARIMA) 354 
To optimize the model, Auto-ARIMA was used to identify the optimal set of 355 
parameters (𝑝, 𝑑, 𝑞) and seasonal parameters (𝑃, 𝐷, 𝑄, 𝑚). The search started from 356 
zero for all orders and was constrained with 𝑚𝑎𝑥_𝑝 and 𝑚𝑎𝑥_𝑞 set to 5 to prevent 357 
overfitting. Weekly seasonality was incorporated by setting 𝑚 = 7 and enabling the 358 
seasonal parameter. The non-seasonal differencing order 𝑑 was fixed at 0, while 359 
seasonal differencing 𝐷 was set to 1. The model selection was based on the lowest 360 
AIC score, with the stepwise search option enabled to reduce computation time. 361 

Extreme Gradient Boosting (XGBoost) 362 
The model was trained using a sliding window of the previous 7 days as input 363 
features. Hyperparameters were kept close to the defaults, with 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 set to 364 
100, learning rate fixed at 0.1, and random state at 42 for reproducibility. No 365 
extensive tuning was performed, as the primary goal was to benchmark against 366 
deep learning models rather than to optimize XGBoost specifically. All input features 367 
were scaled using MinMaxScaler to maintain consistency in feature ranges. 368 

Neural Networks (NN) 369 
The model was tuned into two stages. In the first stage, RandomizedSearchCV was 370 
applied to identify optimal hidden layer sizes, exploring combinations in the range 371 
of 10 to 150 neurons with a step of 20. In the second stage, Optuna was used to fine-372 
tune the alpha (L2 regularization term) within the range 0.1–1.0 and the 373 
𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒_𝑖𝑛𝑖𝑡 between 0.001 and 0.1. The optimization objective was to 374 
maximize the validation 𝑅² score. This sequential approach allowed the architecture 375 
and learning rate parameters to be optimized independently for better efficiency. 376 

Long Short-Term Memory (LSTM) 377 
The LSTM model was tuned using KerasTuner with Random Search method. The 378 
search was employed to explore a range of hyperparameters, including the number 379 



of units (32 to 256 in steps of 32), dropout rate (0.0 to 0.5), and learning rate 380 
(1 × 10−4 𝑡𝑜 1 × 10−2 on a logarithmic scale). The tuning process was configured 381 
with 30 trials and two executions per trial, with each trial trained for 20 epochs. 382 
Early stopping was applied based on validation loss to avoid overfitting. The final 383 
configuration was chosen based on the lowest MSE. 384 

Temporal Convolutional Network (TCN) 385 
The TCN model was also tuned using KerasTuner Random Search, exploring the 386 
number of convolutional filters (32 to 256), kernel size (2 to 8), number of dilation 387 
levels (1 to 4), skip connection activation (True = enabled/False = disabled), 388 
dropout rate (0.0 to 0.5), and learning rate (1 × 10−4 𝑡𝑜 1 × 10−2). Similar to the 389 
LSTM tuning process, 30 trials with two executions per trial were run, and the best 390 
configuration was selected based on validation performance. 391 
 392 

Model Performance Evaluation 393 
Evaluation of forecasting results can be seen from the difference between the 394 
estimates and actual data (forecast vs actual). Parameters that can be seen to 395 
measure the accuracy of forecasting results is to look at the level of error. The 396 
smaller the resulting error value indicates a high level of forecasting accuracy. In 397 
this study, MAE and RMSE are used as evaluation parameters for the models. 398 

Mean Absolute Error (MAE) 399 
MAE is a commonly used metric for evaluating model performance. It measures the 400 
average absolute difference between predicted and actual values (Equation 2), 401 

 𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 (2) 

where 𝑛 is total number observations, 𝑦𝑖 represents actual value and 𝑦̂𝑖 is predicted 402 
value of i-th observation. The absolute error, |𝑦𝑖 − 𝑦̂𝑖|, ensures that all error is 403 
treated equally, preventing positive and negative errors from cancelling each other 404 
out.28 It aggregates error across all observations, providing a comprehensive 405 
measure of model performance. This total is then divided by the total number of 406 
observations (𝑛), making MAE easy to interpret as the typical deviation of 407 
predictions from actual values.  408 
 409 
MAE is particularly useful when the primary objective is to measure the typical 410 
magnitude of errors, as it maintains the same unit as the target variable. 411 
Additionally, MAE is less sensitive to outliers, as all errors contribute proportionally 412 
to the metric without being squared. However, its uniform treatment of errors 413 
means that large deviations are not penalized more than small ones, which can be a 414 
limitation in scenarios where large forecasting errors have a significant impact. 415 



Root Mean Square Error (RMSE) 416 
RMSE is an alternative metric that places a greater emphasis on large errors by 417 
squaring the residuals before averaging them. The RMSE formula is presented in 418 
Equation 3. 419 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 (3) 

Similar to MAE where n is total number observations, 𝑦𝑖  and 𝑦̂𝑖 are actual and 420 
predicted value of 𝑖-th observation, respectively. Unlike MAE, RMSE squares each 421 
error term before averaging, (𝑦𝑖 − 𝑦̂𝑖)2, ensures that all values remain in positive 422 
form and amplifies larger errors, making RMSE more sensitive to significant 423 
deviations. The square root then restores the unit to match the original target 424 
variable, making RMSE easier to interpret.28 425 
 426 
RMSE is particularly useful in scenarios where large deviations are undesirable, 427 
such as safety critical predictions. This is because RMSE applies greater penalties to 428 
larger errors by squaring each error before averaging, making it more sensitive to 429 
significant deviations. However, this sensitivity to large error also makes RMSE 430 
more susceptible to outliers, which may distort performance evaluations if extreme 431 
values are present. 432 
  433 



Table 2. Forecasting model performance results 434 
 435 

436 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

ARIMA 4.078 6.017 8.058 9.385 4.918 6.365 7.422 11.348 1.921 2.544 6.119 8.279

XGBoost 4.470 6.530 5.260 8.320 3.150 5.020 6.360 9.370 1.351 1.925 4.810 7.310

NN 3.456 4.715 4.683 7.121 2.419 4.341 14.458 21.124 5.547 7.962 6.254 9.325

LSTM 4.420 6.177 5.551 8.176 4.494 6.493 5.721 9.168 0.685 1.414 5.047 7.504

TCN 3.436 5.040 4.844 7.908 4.468 6.880 5.631 9.237 0.912 1.770 4.594 7.266

ARIMA 17.663 23.004 35.697 39.482 8.172 10.154 20.865 26.369 11.417 12.052 20.599 24.752

XGBoost 15.670 19.620 17.780 21.990 6.820 8.440 18.360 22.660 5.351 6.621 14.658 18.178

NN 15.320 19.154 12.907 16.612 7.714 9.289 18.487 22.556 4.545 5.630 13.607 16.903

LSTM 13.037 16.712 13.447 16.591 6.211 7.303 16.686 20.280 4.403 5.549 12.345 15.221

TCN 15.322 20.016 13.248 16.706 6.295 7.503 17.290 21.796 4.789 6.361 13.039 16.505

ARIMA 9.694 12.334 9.507 12.107 5.559 7.555 16.931 22.160 4.739 6.154 10.423 13.539

XGBoost 7.410 9.960 8.420 10.870 5.620 7.550 13.280 17.010 3.276 4.026 8.683 11.348

NN 6.281 8.261 7.889 9.679 4.485 6.780 9.344 12.477 2.092 2.427 7.000 9.300

LSTM 6.498 8.651 7.189 9.268 4.645 6.607 9.118 11.585 1.848 2.049 6.863 9.028

TCN 6.283 8.118 7.975 9.896 5.101 7.267 9.281 12.216 1.842 2.188 7.160 9.374

Standard Deviation Average

Fresh Frozen Plasma (FFP)

Red Blood Cells (RBC)

Thrombocyte Concentrate (TC)

Blood 
Component

Model
A+ B+ AB+ O+



 437 

Results 438 

Overall Performance Results 439 
After applying each forecasting model to the historical blood demand data, the 440 
results were analyzed across different blood components. Table 1 summarizes the 441 
performance of each model using MAE and RMSE as evaluation metrics. To facilitate 442 
interpretation, the standard deviation and average of MAE and RMSE across the four 443 
blood types (A+, B+, AB+, and O+) are also provided. The “yellow cell” indicates the 444 
model with the lowest standard deviation and average of MAE and RMSE.  445 
 446 
As shown in Table 2, for the FFP blood component, the TCN model demonstrated 447 
superior performance across most blood types. Specifically, for A+, TCN achieves the 448 
lowest error rates (MAE = 3.436, RMSE = 5.040). NN records a slightly lower RMSE 449 
of 4.715. For B+, NN yields the best performance with MAE = 4.683 and RMSE = 450 
7.121. These scores are followed by TCN with MAE = 4.844 and RMSE = 7.908. For 451 
AB+, NN performs best again with MAE = 2.419 and RMSE = 4.341. For O+, TCN has 452 
the lowest MAE score with 5.631 and LSTM has the lowest RMSE score with 9.168.  453 
 454 
Among all models, the LSTM model achieved the lowest standard deviation (MAE = 455 
0.685, RMSE = 1.414), indicating greater stability in handling errors for FFP 456 
components. Additionally, the TCN model outperformed the other models on 457 
average, as reflected by its lowest average of MAE = 4.594 and RMSE = 7.266. In 458 
contrast, the NN model exhibited the highest standard deviation and average of MAE 459 
and RMSE, suggesting its forecasting performance was inconsistent, particularly 460 
evident in the highest MAE and RMSE scores observed for blood type O+. 461 
 462 
For the RBC blood component, the LSTM model consistently demonstrated the best 463 
performance, as indicated by the lowest MAE and RMSE scores across all blood 464 
types. Among all the lowest MAE scores, only for blood type B+ did the NN model 465 
achieve the best result (MAE = 12.907), followed closely by the LSTM model (MAE = 466 
13.248). These results are further supported by the standard deviation and average 467 
of MAE and RMSE, in which the LSTM model obtained the lowest scores. Meanwhile, 468 
traditional statistical methods such as ARIMA showed the weakest performance, 469 
with a standard deviation of MAE = 11.417 and RMSE = 12.052, and an average of 470 
MAE = 20.599 and RMSE = 24.752. 471 
 472 
For the TC blood component, the LSTM and TCN models outperformed other 473 
models. For A+, TCN showed the lowest RMSE = 8.118 and NN achieved the lowest 474 
MAE = 6.281. For B+, LSTM achieved the lowest error with MAE = 7.189 and RMSE = 475 
9.268. For AB+, it exhibited NN as the lowest MAE = 4.485 and LSTM with the lowest 476 
RMSE = 6.607. For O+, LSTM has the lowest MAE (5.393) and RMSE (11.585).  477 
 478 
The lowest standard deviation for the TC blood component was achieved by LSTM 479 
(MAE = 1.848, RMSE = 2.049) and TCN (MAE = 1.842, RMSE = 2.188). This suggests 480 



that LSTM and TCN models consistently performed well across all blood types. 481 
Overall, the TC blood component showed the lowest average of MAE and RMSE, 482 
achieved by LSTM. Similar to the other components, particularly RBC, ARIMA 483 
showed the weakest performance among all models, as indicated by its high 484 
standard deviation and average scores of MAE and RMSE. 485 
 486 
While this study evaluates all blood types for various blood components (Fresh 487 
Frozen Plasma or FFP, Red Blood Cells or RBC, and Thrombocyte Concentrate or 488 
TC), the subsequent analysis and illustrations primarily focus on blood type O+. This 489 
approach aims to streamline the explanation while maintaining relevance, given 490 
that blood type O is often the most sought after and commonly utilized in 491 
transfusion procedures (Simpson, 2020). Focusing the analysis on blood type O+ 492 
helps illustrate the model’s performance. The trends and patterns identified for 493 
blood type O+ are intended to provide insights that could be applicable to other 494 
blood types, allowing for a more streamlined interpretation throughout the study. 495 
 496 
 497 
Figure 6. Fresh Frozen Plasma (FFP) forecast for type O 498 

 499 
 500 
Figure 6 presents the forecasting results for the FFP blood component, 501 
demonstrating that deep learning models generally perform well in capturing the 502 
overall trend. The orange and yellow lines represent the LSTM and TCN forecasting 503 
results, respectively. The use of dilated convolutions enables TCN to effectively 504 
recognize hierarchical patterns over longer time spans. The LSTM model follows 505 
with slightly different forecasting behavior compared to TCN, further supporting the 506 
observation that deep learning approaches tend to outperform traditional methods. 507 
 508 
However, while both LSTM and TCN excel at identifying general trends, they 509 
struggle to accurately capture sudden spikes in demand. Their forecasted curves 510 
appear overly smooth and are often unable to react swiftly to abrupt changes, 511 
leading to underestimations during peak periods. 512 



 513 
In addition, Figure 6 shows that XGBoost (green line) produces a forecast that 514 
closely follows the actual demand. This is consistent with its relatively low MAE and 515 
RMSE values (Table 2), ranking just behind TCN and LSTM. Nevertheless, it 516 
occasionally fails to capture certain demand points, such as at index Time = 80. 517 
 518 
In contrast, ARIMA (purple line) frequently underestimates the actual demand, 519 
predicting consistently lower values. Similarly, the Neural Network (light orange 520 
line) performs poorly, producing forecasts that significantly deviate from the actual 521 
demand curve. Therefore, these two models show limited effectiveness in 522 
forecasting blood type O for the FFP blood component. 523 
 524 
 525 
Figure 7. Red Blood Cells (RBC) forecast for type O 526 

 527 
 528 
As depicted in Figure 7, the LSTM model demonstrates effective forecast 529 
performance for RBC demand by capturing the overall trend and maintaining 530 
stability in its predictions. Its forecast aligns reasonably well with the actual 531 
demand, particularly during periods of moderate fluctuations. Similarly, the TCN 532 
model exhibits strong performance, closely following the actual demand pattern of 533 
the RBC blood component. However, LSTM tends to smooth out abrupt variations, 534 
which results in reduced responsiveness to sudden spikes in demand. 535 
 536 
XGBoost and the Neural Network (NN) perform moderately well, producing 537 
reasonably accurate forecasts that generally align with the actual demand. However, 538 
their performance remains inferior to that of the LSTM and TCN models. ARIMA, on 539 
the other hand, delivers the poorest performance among all models, showing large 540 
deviations and failing to capture the actual demand trend. 541 
 542 
 543 
Figure 8. Thrombocyte Concentrate (TC) forecast for type O 544 



 545 
 546 
Figure 8 presents the forecasting results for TC demand. The TCN and LSTM models 547 
effectively capture the overall trend, demonstrating their ability to follow broader 548 
fluctuations over time. However, both models exhibit limitations in accurately 549 
predicting sudden spikes in demand. Similar to the results observed for FFP and 550 
RBC, the forecasted curves tend to appear overly smooth and less responsive to 551 
abrupt, isolated peaks. 552 
 553 
The Neural Network (NN) also demonstrates good performance, although it 554 
occasionally fails to accurately capture the actual demand, placing it behind other 555 
deep learning models. In contrast, the ARIMA and XGBoost models exhibit large 556 
deviations from the actual demand curve, suggesting that they are less suitable for 557 
forecasting the TC blood component for blood type O. 558 
 559 

Discussion 560 

Principal Results 561 
This study evaluated the forecasting performance of two deep learning model, 562 
Temporal Convolutional Network (TCN) and Long Short-Term Memory (LSTM), in 563 
predicting demand for Fresh Frozen Plasma (FFP), Red Blood Cells (RBC), and 564 
Thrombocyte Concentrate (TC). The results indicate that both TCN and LSTM 565 
consistently achieved lower error metrics (MAE and RMSE) compared to traditional 566 
models such as ARIMA, XGBoost, and Neural Networks (NN). 567 
 568 
Table 2 presents the standard deviation of each model’s performance, showing that 569 
LSTM and TCN consistently outperform traditional models. This suggests that deep 570 
learning models offer greater stability in forecasting the three blood components. 571 
Among them, LSTM demonstrates superior stability in forecasting FFP and RBC 572 
demand, while for TC demand, both TCN and LSTM perform equally well. 573 



Specifically, TCN yields the lowest standard deviation in MAE, while LSTM produces 574 
the lowest RMSE deviation. 575 
 576 
In terms of average MAE and RMSE scores, TCN and LSTM also outperform 577 
traditional models. TCN performs particularly well for FFP, whereas LSTM excels in 578 
forecasting RBC and TC demand. For FFP, TCN achieved a MAE of 4.594 and RMSE of 579 
7.266. In RBC forecasting, LSTM recorded a MAE of 12.345 and RMSE of 15.221. For 580 
TC, LSTM obtained a MAE of 6.863 and RMSE of 9.028. These results are further 581 
supported by visual comparisons in Figures 6, 7, and 8 (Appendix). 582 
 583 
Deep learning models, particularly LSTM and TCN, are effective due to their ability 584 
to learn both short- and long-term patterns. LSTM, with its sequential processing 585 
and memory architecture, is well-suited for capturing temporal dependencies. 586 
Meanwhile, TCN leverages dilated convolutions, allowing it to recognize temporal 587 
patterns over broader contexts. Although TCN and LSTM often produce similar 588 
outcomes, some differences are observed. For example, in forecasting blood type O 589 
in the FFP component, TCN achieved the lowest MAE (5.631), while LSTM obtained 590 
the lowest RMSE for the same case. Despite LSTM’s strong RMSE performance, some 591 
forecasted points appear less accurate during sudden spikes. This is likely due to 592 
LSTM’s sequential nature, where data is processed step-by-step, limiting its ability 593 
to quickly adapt to abrupt changes. 594 
 595 
Across all blood components and types, deep learning models in this study, LSTM 596 
and TCN, consistently outperform traditional statistical and machine learning 597 
approaches. Their strength lies in modeling sequential dependencies, nonlinear 598 
patterns, and seasonal fluctuations inherent in blood demand data. LSTM is 599 
particularly effective for highly volatile series due to its capacity to capture long-600 
term dependencies. On the other hand, TCN offers robust temporal pattern 601 
recognition while maintaining computational efficiency. 602 
 603 
Although ARIMA, XGBoost, and NN occasionally yield relatively low error scores, 604 
their model architectures are not inherently designed to capture temporal 605 
dependencies as effectively as sequence-based models like TCN and LSTM. ARIMA, 606 
with its linear assumptions, struggles with nonlinear and long-range dependencies, 607 
resulting in higher error values. XGBoost, as a tree-based ensemble method, 608 
performs moderately well but lacks temporal awareness unless time-based features 609 
are manually engineered. Similarly, a standard feedforward Neural Network (NN) 610 
does not incorporate temporal context unless extended with recurrent or 611 
convolutional layers. Nevertheless, NN demonstrates reasonable performance 612 
under simpler, more stable demand patterns. 613 
 614 

Limitations 615 
While this study emphasizes maintaining strong forecasting performance with low 616 
standard deviation as an indicator of model stability, it also has several limitations. 617 
 618 



First, the forecasting models demonstrated difficulty in detecting sudden and 619 
irregular fluctuations in blood demand. Both LSTM and TCN are designed to learn 620 
general and recurring temporal patterns, which may limit their responsiveness to 621 
abrupt variations. This poses a challenge in real-world applications, where 622 
emergencies, seasonal shifts, or special events can cause unexpected demand 623 
surges. 624 
 625 
Specifically, LSTM tends to smooth out sharp variations, reducing its ability to 626 
respond accurately to sudden spikes. This limitation stems from its sequential 627 
processing architecture, where predictions are based heavily on prior time steps. 628 
Although this makes LSTM effective for learning consistent temporal dependencies, 629 
rapid changes in data may be diluted or averaged out across the sequence, resulting 630 
in missed peaks or drops. 631 
 632 
Similarly, TCN also struggles to capture abrupt changes in demand. Its forecasted 633 
output often appears overly smooth and fail to adapt quickly during peak periods. 634 
This is primarily due to the use of dilated convolutions, which are optimized for 635 
learning long-term dependencies by skipping over certain data points. While 636 
effective for broad trend recognition, this architecture may overlook sharp, isolated 637 
fluctuations leading to underestimations during sudden demand spikes. 638 
 639 
In addition, the descriptive statistic (Table 1) indicates that several blood type and 640 
component combinations have strongly skewed distributions with high kurtosis, 641 
suggesting that demand is usually low but occasionally spikes to very high levels. 642 
For example, RBC demand in A+ and O+ can reach values many times higher than 643 
average. These rare surges are important from a clinical perspective, but their 644 
infrequency in the historical record makes them difficult for the models to capture. 645 
Consequently, both LSTM and TCN often underestimate demand during such peak 646 
events, which contributes to their limited responsiveness. 647 
 648 
Second, the dataset used in this study is limited in terms of geographic and 649 
contextual diversity, which may restrict the generalizability of the findings. Blood 650 
usage patterns can vary significantly across regions, healthcare institutions, and 651 
population demographics. Therefore, the performance of the models may differ in 652 
other settings not represented in the current dataset. However, no evidence of 653 
systematic bias was identified in the data collection process, as the records were 654 
obtained directly from standardized operational reporting of the Indonesian Red 655 
Cross. 656 
 657 

Comparison with Prior Work 658 
This study builds upon previous research efforts that primarily employed 659 
traditional time series and classical machine learning techniques for blood demand 660 
forecasting. For example, Shih and Rajendran (2019) reported that ARIMA delivered 661 
the lowest forecasting error among conventional statistical models when applied to 662 
blood component demand. Similarly, Fanoodi et al. (2019) examined both ARIMA 663 



and Artificial Neural Networks (ANN) for daily blood demand prediction. Sun et al. 664 
(2021) advanced the field by employing XGBoost, a tree-based ensemble model, to 665 
forecast red blood cell demand. Their results demonstrated enhanced pattern 666 
recognition over older models and showed promise in handling moderately complex 667 
demand structures. 668 
 669 
However, while these approaches brought incremental improvements, they 670 
remained limited in their ability to fully capture complex temporal dynamics, 671 
particularly in the presence of long-term dependencies, seasonality, and sudden, 672 
irregular demand spikes. Traditional models like ARIMA rely on linear assumptions 673 
and are effective only for stationary series with stable trends. Meanwhile, machine 674 
learning models such as XGBoost and ANN lack intrinsic mechanisms to understand 675 
the sequential nature of time series data unless temporal features are explicitly 676 
engineered. 677 
 678 
In contrast, this study explores the use of deep learning models, specifically 679 
Temporal Convolutional Networks (TCN) and Long Short-Term Memory (LSTM), 680 
which are inherently designed to model temporal structure, sequential 681 
dependencies, and nonlinear relationships in time series data. TCN, with its dilated 682 
convolutional layers, can capture long-range patterns while remaining 683 
computationally efficient. LSTM, with its gated memory structure, effectively retains 684 
historical context over extended sequences. 685 
 686 
Our empirical findings show that TCN and LSTM consistently outperform ARIMA, 687 
ANN, and XGBoost across multiple blood components (FFP, RBC, and TC) and blood 688 
type (A+, B+, AB+, and O+). Notably, models with a built-in understanding of 689 
temporal structure, such as TCN and LSTM exhibited greater stability, lower average 690 
error, and better adaptability to trend variations, especially in datasets with 691 
nonstationary and fluctuating patterns. 692 
 693 
Furthermore, the advantage of deep learning becomes more pronounced in multi-694 
step and medium- to long-range forecasting, where capturing seasonal cycles and 695 
gradual demand shifts is crucial. Although models like XGBoost are competitive in 696 
forecasting under relatively stable conditions, their performance deteriorates when 697 
applied to more volatile or irregular patterns, scenarios where TCN and LSTM 698 
maintain robustness. 699 
 700 
Despite these advancements, it is important to acknowledge that even TCN and 701 
LSTM face challenges in forecasting extreme values or rare spikes. This is a common 702 
limitation in many forecasting models and highlights an area for future research, 703 
potentially involving hybrid models that leverage its respective strengths 704 
(integrating LSTM and TCN models). 705 
 706 



Conclusions                  707 
This study has demonstrated that Temporal Convolutional Networks (TCN) and 708 
Long Short-Term Memory (LSTM) outperform traditional forecasting methods such 709 
as ARIMA, XGBoost, and standard Neural Networks in predicting demand for Fresh 710 
Frozen Plasma (FFP), Red Blood Cells (RBC), and Thrombocyte Concentrate (TC). 711 
These models consistently achieved lower error metrics (MAE and RMSE) and 712 
demonstrated greater stability, indicating their effectiveness in modeling the 713 
complex temporal dynamics inherent in blood demand data. 714 
 715 
The comparative advantage of these models lies in their distinct strengths. TCN 716 
offers efficient learning of broad temporal patterns through dilated convolutions, 717 
while LSTM excels at capturing long-term sequential dependencies through its gated 718 
memory architecture. Both models are particularly well-suited for recognizing 719 
recurring patterns and trends, which are essential in time series forecasting for 720 
healthcare logistics. However, their performance diminishes in scenarios involving 721 
sudden, unpredictable demand spikes, highlighting the need for further 722 
improvement in responsiveness. 723 
 724 
Based on these findings, TCN and LSTM are recommended as reliable tools for blood 725 
demand forecasting, especially when used in operational environments where 726 
accurate forecasting is essential. The integration of these two architectures, 727 
leveraging TCN’s parallelism and LSTM’s memory depth, may yield even more 728 
robust forecasting systems capable of balancing accuracy and adaptability. 729 
 730 
Future work should consider enhancing these models through integrating these 731 
models. Additionally, expanding the dataset to encompass multiple geographic 732 
regions and healthcare institutions would improve model generalizability and 733 
support the development of more universally applicable forecasting systems.  734 
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Designing a Permissioned Blockchain 
Network for the Halal Industry using 
Hyperledger Fabric with multiple channels 
and the raft consensus mechanism
Isti Surjandari*, Harman Yusuf, Enrico Laoh and Rayi Maulida

Introduction
The advent of the Fourth Industrial Revolution promises significant opportunities and 
challenges in many industries, one of them being in the supply chain. Supply chain 
industries are embracing automation and data exchange and implement new technolo-
gies including Blockchain, Artificial Intelligent, and Internet of Things (IoT) devices [1]. 
These innovations are fundamentally changing supply chain dynamics including Halal 
Industry.

Abstract 

Halal Supply Chain Management requires an assurance that the entire process of 
procurement, distribution, handling, and processing materials, spare parts, livestock, 
work-in-process, or finished inventory to be well documented and performed fit to the 
Halal and Toyyib. Blockchain technology is one alternative solution that can improve 
Halal Supply Chain as it can integrate technology for information exchange during the 
tracking and tracing process in operating and monitoring performance. This technol-
ogy could improve trust, transparency, and information disclosure between supply 
chain participants since it could act as a distributed ledger and entitle all transactions 
to be completely open, yet confidential, immutable, and secured. This study uses a 
Blockchain Network with three channels and uses raft consensus algorithm in design-
ing web interfaces and testing their capabilities. From the web interface, there were 
no failures in the validity test during the invoke test and the query test. In addition, the 
web interface was also successfully tested to thwart the formation of a block in case 
of data input errors from the user. The server can also do the process as a provider of 
information and validator for the web interface. From the results of simulations con-
ducted on the Blockchain Network that was made, Blockchain’s transaction speed is 
fast and all the transaction is successfully transferred to other peers. Thus, Permissioned 
Blockchain is useful for Halal Supply Chain not just because it can secure transactions 
from some of the halal issues, but the transaction speed and rate to transfer data are 
very effective.

Keywords:  Blockchain, Hyperledger Fabric, Multiple channels, Raft, Halal Supply Chain
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Islamic economic development report published by the Dubai International Financial 
Center in 2019, states that the Halal Industry has increased rapidly compared to some 
other industrial sectors, increasing with an average growth of 100 billion US $ annually 
and is expected to reach US $ 3.2 Trillion in 2024 [2]. This growth is influenced by the 
increase of number of the Muslim populations in the world. From a report on Muslim 
growth published by the Pew Research Center in 2011, the estimated average growth of 
Muslims per 10 years is 1.63% and expected to be 26.4% of the total population the world 
in 2030 [3]. The size and growth of the Muslim population results in the increase of pur-
chasing power, hence the value of the Halal Industry will increase.

Despite Halal Industry’s increase in purchasing power and value, the condition has not 
yet achieved its optimal potential as there are still many sectors that can be improved. 
For example, although Indonesia is recognized as Muslim’s world’s most populous coun-
try, it lags behind other Muslim-majority countries in creating an ecosystem that sup-
ports Halal Industry according to the Global Islamic Economy Indicators (GIEI) 2019. 
Thus, there are still many potentials that can be improved to maximize the Halal Indus-
try both domestically and globally, such as improving Halal Supply Chain quality [4].

The government roles in improving Halal Supply Chain is substantial to enforce a 
law that requires all business actors to make Halal Certificates on food products, medi-
cines, cosmetics, and other genetically engineered products. Halal Certificate is a proof 
or guarantee that the products are safe and acceptable in accordance with Islamic law. 
Yet, Halal Certificate is inadequate to improve the Halal Supply Chain. Customers must 
ensure that the raw material used and the process to make a product is halal, as well as 
the final product. Other way to improve the Halal Supply Chain is to integrate technol-
ogy for information exchange during the tracking and tracing process in operating and 
monitoring performance [5]. Moreover, both vertical and horizontal collaborative rela-
tionships in the form of trust, transparency, and information disclosure between supply 
chain participants is essential to maximize the integration of technology and informa-
tion with the Halal Supply Chain and increase mutual effectiveness and efficiency [6].

This paper aims to adopt a blockchain framework for Halal Supply Chain case by using 
Hyperledger Fabric. In addition, this paper will test it to find out its capability to Halal 
Supply Chain in found out some blockchain key aspect that can improve Halal Supply 
Chain, validating the transaction process, and testing the transaction speed. The rest of 
this paper is organized as follows: The “Literature review” section consists of some theo-
retical concept. The “Methodology” section consists of some related work of the method 
that will be used. The “Result” section consists of the adopted Blockchain Framework 
and its overview of the finished interface of blockchain framework. The “Discussion” 
section consists of the discussion of the result obtained in this research. The “Conclu-
sion” section consists of this research conclusion and some possible suggestions for this 
research.

However, the empirical results reported herein should be considered in the light of 
some limitations. First, the data used to design the Blockchain architecture is arranged 
based on the Halal Supply Chain flow in the study by Simatupang et al. [7]. Therefore, 
some adjustments are needed if the model adopted for a different flow. Furthermore, 
Hyperledger Fabric version 1.4.3 is used to design the blockchain architecture. Thus, the 
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advancement of the software in the future could result better model performance than 
the current model.

Literature review
In this part, the theoretical basis and the concepts used in this study are discussed. The 
concepts explained include theories and applications about Halal Supply Chain, Block-
chain, Permissioned Blockchain, and Hyperledger Fabric.

Halal Supply Chain Management

Halal Supply Chain Management may be defined as a network in assuring the entire pro-
cess of procurement, distribution, handling, and processing materials, spare parts, live-
stock, work-in-process or finished inventory to be well documented and performed fit to 
the Halal and Toyyib [6]. Halal itself is something that is permitted in accordance with 
the rules that already exist in the Qur’an and the Hadith, while the term Toyyib means 
healthy and good [8]. The Toyyib concept can also be used to enrich society with spir-
itual, moral, and humanitarian values, as well as food safety regulations [9]. However, the 
gray area (located between halal and haram) causes doubt in the application of the Halal 
concept. Therefore, the opinion of the academic, religious regulations (fatwas), and local 
customs in assessing and determining the product is needed to determine which prod-
uct is prohibited or allowed to be consumed [10].

Halal Supply Chain carry five fundamental issues, which are traceability (ability to 
discover information about location and origin of the product); regulation for product 
withdrawal related to halal prerequisites; end-to-end Halal Supply Chain integrity from 
producer into customer; contradictory systems and different interpretations regard-
ing Halal Supply Chain; and lack of integration of technology and information with the 
Halal Supply Chain [11].

Blockchain

Blockchain technology is one of the alternative solutions that can improve Halal Supply 
Chain. This technology could resolve these problems since it could act as a distributed 
ledger and entitle all transactions to be completely open, yet confidential, immutable, 
and secured. Blockchain provides security as protection and prevention from dupli-
cation, or distortion of data from outside noise. The participants (in decentralized-
computer-terminal form) are connected by using key-access system enabling direct 
transactions between sellers and buyers without intermediaries [12]. Because blockchain 
nature is a distributed ledger database, there are many things that can be improved by 
using blockchain such as big data for data analysis [13, 14].

Supply Chain transactions will be gathered in a set of blocks when each set of new 
transactions is added successfully. The block will be added to the Blockchain Network 
in a linear chronological order with timestamp [12]. Each supply chain participant, 
known as peer node on Supply Chain Network, receives a copy of blockchain which can 
be downloaded automatically. Peer nodes would have access to all information which 
includes supply chain participant’s address and supply chain path, hence even the user 
will know the flow of the manufacturing process of a particular product [15].
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Permissioned Blockchain

Permissioned Blockchain, which is a specialized form of blockchain for private 
transactions and having sufficient speed of transactions in real time basis [16, 17], 
is the most suitable type of Blockchain Network for Halal Supply Chain. The role 
of each Supply Chain participant will be determined by the administrator to decide 
what information can be seen and added. Intrinsic configuration of the blockchain 
manages transaction nodes and defines the role of the nodes in accessing or making 
changes to the Blockchain, including maintaining the identity of each Supply Chain 
participant in the Blockchain Network [18]. Supply chain participants such as sup-
pliers, distributors, wholesalers, and retailers focus solely on their respective parts. 
Thus, regulators are essential to determine the role of each supply chain participant 
even though in determining each role, must also be made by consensus so that no 
one feels disadvantaged [16, 19].

Halal Supply Chain and Blockchain

Halal Supply Chain needs transparency thus authenticity and reliance of halal brands 
can be ensured. Blockchain combines distributed ledgers and smart contracts so 
that the performance of the Halal Supply Chain will be increased. The improvement 
will generate more dependable information and assurance of Halal Supply Chain; 
smooth and effective halal process from beginning of production process to con-
sumer’s point of purchase; Halal Supply Chain sustainability; consumer trust in the 
halal brand; and acknowledgment from worldwide of the halal Blockchain [6].

Fundamental principle of Halal Blockchain is to combine all different Mazhab in 
targeted markets with Islamic schools, religious regulations (fatwas), and local tra-
ditions. Halal Blockchain must be pertinent for all countries (be it Muslim or non-
Muslim). Halal Supply Chain participants are given information automatically about 
the process compliance based on specific product market scenarios. Halal Block-
chain’s authenticity and security is a priority to secure confidential data and mini-
mize the opportunities of cyber-attack [5].

Halal Blockchain gives some benefit to producers, distributors, retailers, logistic 
service providers, and halal certification agencies. Halal certification agencies must 
adopt Blockchain technology to gain more trust and authenticity of the halal brand. 
They need to support halal certification of all Halal Supply Chain Instances to 
encourage the application of more obedient transportation and warehousing down-
stream the Supply Chain. Harmonizing the standards of Halal Supply Chain in vari-
ous countries will be critical to support the Halal Industry and their global supply 
chain [5, 11].

Prior research related to Blockchain and Halal Supply Chain stated that there are 
three issues faced by the Halal Supply Chain globally, which are: contamination, dis-
obedience, and perception. In this case, Blockchain technology is potential in resolv-
ing the first two problems (i.e., contamination and disobedience). However, the 
application of Blockchain needs to combine with Halal Certificate from each Supply 
Chain participant to get a better outcome [6].
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Hyperledger Fabric

Hyperledger Fabric is an open-source Distributed Ledger Technology platform which is 
widely used for various company-related cases. This platform is very interactive to create 
a blockchain framework due to its modular and configurable architecture. The expla-
nation of Hyperledger Fabric documentation is also very comprehensive compared to 
other platform and there are many developers contributed to developing this platform.

Hyperledger Fabric V.1.x distinguish the transaction into two types, execution transac-
tion and ordering transaction. Whereas, there are three steps of transaction flow, which 
are execution, order, and validation. Each transaction can be executed in separated peer 
and can be executed before consensus from the ordering service is executed [20].

In the Blockchain system, there are some key terms such as nodes, data structures, 
transactions, ordering services, and channels [16]. Blockchain Networks must consist of 
several nodes. These nodes are usually defined as a virtual entity because it could run on 
physical hardware. Peers, orderers, and clients, in general are a set of nodes in the Block-
chain Network [21]. Peers make transactions and distribute ledgers. In general, all peers 
are committers. On the other hand, orderers keep all the orders from the transaction 
that has been committed, creating new blocks, and search for consensus.

Clients are a set of nodes that act as end users of Blockchain Networks. The roles of 
client are sending a transaction proposal to peers, coordinating the results of the exe-
cution, verifying whether the transaction is valid, and sending the transaction that has 
been verified by peers to the ordering service. Furthermore, the data structure maintains 
global status in all associates using key value storage and ledgers (KVS). KVS manages 
and maintains the system to be updated, while the ledger provides a valid and verified 
history of all state changes [21].

In Hyperledger v1.4.x there are several types of transactions, such as init (deploy), 
invoke, and query. Init or deploy is useful for installing and instantiating chaincodes 
hence the transactions can be run. While invoke are useful for invoking transactions 
from chaincodes that have been installed and instantiated, query can be used for check-
ing what transactions were successfully carried out in the process [22].

The transaction flow on v1 fabric follow the following steps:

1.	 The client makes a transaction and sends it to all endorser peers according to the 
chain.

2.	 Each endorser peers authorizes transaction execution and makes endorsement sig-
natures.

3.	 Clients collect support signatures from endorser peers and collect them through the 
ordering service.

4.	 Ordering services create transaction blocks and maintain orders with a timestamp.
5.	 When supporting partners receive a block of transactions, they will assess the trans-

action against its authorization policy, then determine the validity of the transaction.

Ordering Services Nodes provided by Hyperledger Fabric have the role of managing 
and maintaining channel configuration as well as executing the transaction process. In 
the channel configuration section, ordering services nodes has the power to control the 
basic channel access section along with a consortium, which is configured in advance 
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through the configuration file. Ordering service nodes can control which nodes, accord-
ing to the previously defined consortium, are able to read and write transaction data 
[23].

Ordering Services Nodes also have some functions for each process of transaction 
flow (Order, Execute, Validate). In the Order Phase, the ordering service node will col-
lect endorsed transactions (transactions that have already been endorsed by endorsing 
peers) from clients. After the collected transaction process hit batchSize (the limit of 
transactions that can be collected per batch) or batchTimeout (the time limit for collect-
ing transactions per batch) [24], ordering service nodes will set batch transactions in a 
strict order and turn them into a block in the execute phase. Since transactions inside 
the block are in strict order, all successful and validated transactions will not be thrown 
away (there will be no ledger forks). Last but not least, in the validation step, the order 
will allocate blocks to all peers that are connected to the same channel (depending on 
the configuration of the channel) [23].

There are three types of Ordering Services Nodes Implementation, which are Solo, 
Kafka, and Raft:

1.	 Solo

Solo is one of Ordering Service Implementation to evaluate the Blockchain that has 
been developed. Solo operates without a consensus algorithm and contains only one 
ordering node [23].

2.	 Kafka

Kafka is one of the ordering service implementations originated from the Crash Fault 
Tolerant (CFT), where the process can proceed even though some of the current nodes 
encounter N failures while N/2 + 1 nodes still able to run [24]. This consensus mecha-
nism uses “leader and follower” in the configuration node and is handled by Zookeeper 
Ensembled. However, the method of seeking offset numbers is from the ordering ser-
vice node (the ordering service node has already been configured to preserve local logs) 
and not via Kafka partitions like the usual process of kafka. The process is slower than 
straight from Kafka but duplication of the block is unlikely to occur [10, 22, 23].

3.	 Raft

In fact, Raft is similar to Kafka because the implementation of the ordering service 
also uses CFT. Raft uses the Raft consenter as ordering services nodes to implement the 
“leader and follower” process. The raft is also used by Hyperledger Fabric as a bridge 
connector to create a consensus of Practical Byzantine Fault Tolerant since they have a 
similar procedure in the integration of Hyperledger Fabric [23, 25].

Kafka and raft have the same consensual mechanism, but there is an apparent differ-
ence in the operation of the two ordering service node implementations. These aspects 
are the main reason for driving the use of Raft rather than Kafka in this paper.

1.	 General comparison
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	 Kafka and Zookeeper not compatible for massive networks. However, there are sev-
eral organizations and channels on the Blockchain Network, the mechanism almost 
like one organization only which is not too decentralized. Raft on the other hand, 
uses ordering service nodes as a state replication machine (Raft Consenter) directly. 
Thus, all organizations in the Blockchain Network will have their own ordering ser-
vice node and the Blockchain Network will be more decentralized [23].

	 Kafka also requires docker images to run for the CFT since Kafka was developed by 
Apache. This is overly complex, and its application needs to be further studied. On 
the other hand, Raft was natively developed by Hyperledger Fabric itself to make it 
easier [23].

2.	 Difference in terms of configuration
	 Overall, Raft is simpler than Kafka in terms of configuration. Raft is designed directly 

from the ordering service node [25] while Kafka must use Kafka brokers and Zoo-
keeper Ensemble to make CFT process work [22]. However, Raft is more difficult 
than Kafka when configuring the individual channel because Raft must set up the 
transport layer security (TLS) certificate for client and server [25]. While Kafka only 
needs to decide the number of Kafka brokers and Zookeepers [22].

	 When building a docker container, Raft only uses ordering services nodes that have 
already been configured by the previous network configuration [25, 26]. On the other 
hand, Kafka must separate the work of Kafka and Zookeeper containers and must 
specify the amount of Kafka and Zookeeper containers in the docker compose file. 
That is why the process of running CFT using Kafka is getting trickier [22].

	 All nodes, such as peers, can interact with other peers by using channels or using pri-
vate data. The channel is private in terms of making transactions; only users who are 
on the same channel can only make transactions. Yet, users in a different channel can 
see the data due to the transparency concept. In contrast, private data makes trans-
actions private in the channel and specific peers. Only peers that are already config-
ured with it can do the transactions, even though it will eventually be distributed to 
others when the block is distributed [27].

Methodology
This part consists of some related work of the methodology that will be used with a case 
study example.

Research object

For the purpose of this study, a halal meat industry example based on some research will 
be used. There are several reasons for choosing a halal meat industry as a sample. In the 
halal meat industry, to keep the “Toyyib” exists from its own characteristics is wildering 
due to its perishable characteristic and difficulty to control the temperature [28]. These 
characteristics become a challenge for the supplier, producer, distributor, wholesaler, 
and retailer to keep the safety and freshness of fresh meat from contamination, disobedi-
ence, and perception. Blockchain can handle the first two problems, contamination, and 
disobedience because of its aspects as explained in the previous part [10].
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The supply chain participants of halal meat industry include suppliers, producers, dis-
tributors, and customers. In halal meat industry, only livestock that meet certain criteria 
of age will be slaughtered. The meat will be sent to the producers to be processed and 
cooled. Then, it will be tested to determine whether it is halal or otherwise. Only the 
halal-certified meat will be sent to the distributor. The distributors will send it to the end 
customer or else be refrigerated [7].

In general, the supply chain participants can easily see the halal certification from the 
regulator. However, since customers only see the final product, not the raw material 
used nor the process to make a product to see if it is halal, there are some of them who 
are doubting the halalness of Halal Industry chain. A diagram of the halal supply chain 
flow can be seen in Fig. 1.

The Blockchain Network of meat ordering system was created to resolve the traceabil-
ity problems of the final product. Blockchain as a distributed ledger is obliged to record 
the transactions in a time sequence. After the transaction is gathered in a set of blocks, 
the block is irrevocable. The irrevocable block characteristic is feasible to resolve cus-
tomer’s doubt on the traceability of halal-certified meat.

In this study, the Blockchain Network consists of three channels, with each channel 
consisting of two organizations, and each organization has one client and two peers. 
The first channel is to connect suppliers and producers, the second channel is to con-
nect producers and distributors, and the third one to connect distributors and end users. 
Three channels are designed separately because each participant may have a different 
price agreement thus their privacy is protected. The Blockchain Network also consists of 
five orderer nodes that have been configured with the Raft consensus mechanism. The 
channel configuration diagram can be seen in Fig. 2.

For simplicity and due to similarity in the flow process of each channel, this research 
will explain the configuration process of the first channel, which is the channel for sup-
plier and producer. The steps for configuring the Blockchain Network consists of [29]:

1.	 Creating the Blockchain Network for all Halal Supply Chain entities and network 
administrators (which is needed once in the process because all channels must be 
included in the same network to make some peers have the ability to interact in mul-
tiple channels).

2.	 Defining the consortium of the entities (for example, the supplier will be bound with 
the producer in the consortium because they will do the transaction process).

Fig. 1  Ordering Service Process on Halal Supplier to End-User [7]
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3.	 Creating the first channel for the consortium process of supplier and producer.
4.	 Inserting peers of supplier and producer into the channel (to interact with other 

peers and save the transaction proof on the ledger).
5.	 Installing and instantiating the Chaincode to each peer (the supplier just needed 

once in the process but the producer twice because the producer will be added to the 
other channels to which is the channel for producer and distributor). The reason is 
although the smart contract in this design is similar, the real-world process actually 
different because the contract in the real world should be more complicated.

The result of the blockchain configuration process can be seen in Fig. 3.

Result
In this chapter, the overview of the Blockchain Network server and web interface will be 
discussed.

Fig. 2  Blockchain framework for Halal Supply Chain

Fig. 3  The Result of Blockchain Channel for Supplier and Producer in The First Channel of Blockchain 
Network [29]
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Overview of the Blockchain Network server and Interface

This blockchain is basically a development of fabcar with its chaincode is modified 
according to the Halal Supply Chain. There are four processes of the Blockchain pro-
totype used on the Halal Supply Chain. The process involves querying a single item ID 
(checking one item in the Blockchain), querying all items (check all items in the Block-
chain), transfer an item ID (transfer one or more items to another company), and cre-
ate an item ID (create one or more items in the Blockchain). The main change from the 
chaincode is the Create an Item ID process. The shape of the web interface can be seen 
in Fig. 4.

The invoking process defines as a process of entering transaction data into a Block-
chain. This process includes Create an Item ID and Transfer an Item ID. Create an item 
ID has several special attributes consisting of item ID, color, doctype (the type of item 
to be sent), make (item name), model (specification/type of item), the owner (owner), 
amount (amount goods to be transferred), and certified links (proof of halal certification 
links). There are special attributes owned by some companies for making transactions 
on different channels, which is the channels attribute. There are also some of the attrib-
utes for creating an item ID that is being changed or added from fabcar chaincode, such 
as are Color, docType, Amount, Certified Link, and Channel.

In the color attribute, the user can choose what color to add to the attribute. This set-
ting will be saved hence the user does not need to write the type of the item color again. 
It is more convenient for the user if they want to input the historical data so that they 
do not need to type it from the beginning again. In the docType attribute, created or 
transferred items in the Blockchain are not only in the form of food, but drinks or items 
in general can also be included in the Blockchain. Thus, on the Amount attribute, the 
company that wants to create an item can tell how many items will be sent. This prevents 
repetition on entering data if it turns out that the items sent are in large quantities. For 
created or transferred items that are considered to be halal, the company needs to attach 
the halal certification link. Trust between each supply chain participant about the items 
in halal category is expected to increase with this attribute.

Fig. 4  Display of Blockchain Network’s Web Interface
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Furthermore, all companies that enter two channels (such as producers who interact 
with suppliers and distributors or distributors who interact with producers or custom-
ers) have special attributes in the interface, called channels. There are two advantages of 
this channel attribute which are: (1) items that the company wants to create or transfer 
to another company will be sent correctly and (2) The interface of a company that has 
two channels is not necessarily separated into two interface so that it is easier and more 
interactive in conducting transactions through the company.

To prove that the system can be made, there are two key that must be considered, 
which are the web interface [can block data be created directly from the web interface 
(client)] and the integrity between the web interface and server of the terminal (whether 
the data is truly properly stored on the server so that data is not lost).

Discussion
In this chapter, we will discuss the validity test of the web interface, and test the integrity 
of the web interface and server to test whether the web interface of the blockchain can 
be used as well as a test of the Blockchain Network transaction simulation to find out 
how many transactions can be received by the Blockchain Network.

Validity of the web Interface

When the web interface is successfully initiated into the web browser, the block and 
transaction ID data of the block will appear on the right. It indicates that the transac-
tion data is successfully stored in the Blockchain. In the previous image we can see that 
the third block of the Blockchain was formed before the web interface was used. This is 
because of the process of installing and instantiating the chaincode that has been done 
previously to initiate the web interface. When all data attributes are successfully entered 
according to their respective attributes, the latest block (in this case, block 4) and the 
transaction id will automatically appear on the right side of the web interface. Moreover, 
the left side of the web interface will notify the user that the input of data item from the 
user’s company is successfully done.

The process of making a block can only be done on the create an item ID and transfer 
an item ID. This is due to the process of writing and reading data (the process of writing 
data so that new data appears or changing old data) occurs in both parts. The process 
of writing new item data can be done to create an item ID and the process of chang-
ing item ownership is in the transfer of an item ID. Both processes must be separated 
even though they have the same goal of entering data into the Blockchain. Creating an 
item ID can only be done if the data item entered in the data form has an id form that 
is still not registered in the company’s Blockchain database. Meanwhile, the transfer of 
an item ID can only be done if the item data changed ownership is already registered in 
the Blockchain database. This is because the main purpose of the transfer of an item is 
to change the state of the database as well (the most recently viewed data), thus creat-
ing a new block. Old blocks of data item ID whose ownership has not been changed will 
remain the same to maintain the Blockchain’s tampered-proof nature.

Meanwhile, from querying an item ID and querying all item ID, the two parts of the 
web interface have a function as reading data (only to check the items in the Blockchain 
and their data attributes). When both parts of the web interface are executed, the new 
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block on the right will not be formed because its main purpose is only to check the block 
and transaction ID. But on the left side of the web interface, state database information 
(the most updated information) about the item and its attributes will appear on demand. 
The difference between the two parts is that the query an item ID will only search for 
one specific item ID that matches the channel that connects the information while the 
query all item ID looks for all information about the item ID corresponding to the chan-
nel that connects the information.

There are several cases that cause a block to be filled with incorrect data and cause 
the Blockchain to be invalid, such as incomplete entering data attributes and incorrect 
data entry. In order to prevent the problem, interfaces and servers are created using 
prevention tools such as pop ups or errors so that invalid data will not be formed in a 
company’s Blockchain database server. For example, in creating an item ID section, the 
first requirement is that all data must be entered. If there is at least one part of the data 
attributes that is not entered, then the item data cannot be entered into the Blockchain 
channel.

In addition, in the Item ID section, filling in the data form can only be done if the 
first four letters are “ITEM” in capital letters and followed by a number (for example: 
“ITEM4”). Then, the item ID must be different from the item ID that exists on the Block-
chain so that there is no duplication in the Blockchain item data. If all the requirements 
above are not met, an error will appear on the interface. Unlike creating an item ID, 
transferring an item only allows existing Item ID data. If the item ID on an item transfer 
is apparently not in the Blockchain, an error will appear reminding the user that the data 
is still not in the Blockchain so the item transfer process cannot be performed.

Integrity of web Interface and server

There are other functions regarding the server besides storing transaction data from 
the web interface. The terminal server also functions as a notification for the company 
even though the web interface is still not turned on. When the company wants to check 
information about any item ID already in the Blockchain through the web interface, that 
information will also appear on the terminal server. Then, when the company sends data 
or change data about the item ID into the Blockchain through the web interface, the 
terminal server will notify the company that sent the notification that the information 
sent was successfully saved to the Blockchain and send information about the number 
of blocks that have been created in the Blockchain. The terminal server also sends noti-
fications to companies that are on the same channel as companies that send data about 
item ID or change data about item ID that data changes occur within the Blockchain and 
send information about the number of blocks that have been created in the Blockchain. 
Finally, if there is an error in inputting data, the terminal server will notify that there is 
an error that one of the data attributes sent is not in the format. The process can be seen 
in Fig. 5.

Transaction simulation test

Simulation configuration

The blockchain is tested for four rounds and five replications with a total of 60 rounds. 
Each channel is tested for two rounds for the invoking process (create an item ID and 
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transfer an item ID) and two rounds for the query process (query an item ID and query 
all items). Because the simulation process is intended to test the maximum ability of 
Blockchain Network in receiving transactions, each test is tested using “fixed-backlog” 
to determine the maximum speed of TPS (transactions per second) and the maximum 
transactions that experience a backlog of 5 transactions. Each replication has a different 
transaction duration, which is 10, 20, 30, 40, and 50 s. The reason for choosing a simula-
tion based on transaction duration rather than the number of transactions is the same as 
the reason why using the “fixed-backlog” type.

The Blockchain Network capability was made for previous research cases using three 
channels and crash tolerant crashes Raft crash tested with Ubuntu 18.04 LTS 64-bit 
18 GB RAM 250 GB Hard Disk installed with hyperledger caliper and hyperledger fabric.

Simulation result

Based on Fig. 6, each channel in a blockchain model shows the same pattern regardless 
of the value of transaction speed. The send rate is relatively constant in each channel on 
each value speed of transaction, ranging from 32.0 to 49.0 TPS. However, the through-
put value display two different patterns depending on the type of the process. Compared 
to another model, this model gives better outcome regards to the value of throughput 
rate with the relatively same hardware used for processing. Blockchain model proposed 
by Geneiatakis et al. resulted in throughput value ranging from 2.5 to 13 TPS [30], while 
the outcome of the blockchain model by Yusuf et al.. resulted in throughput value with 
an average of 27.9 TPS, the highest of 34.1 TPS and the lowest of 25.3 TPS [17].

The query process consists of query an item ID and query all items, resulting in a 
throughput value of 31.0–48.5 TPS. The throughput value of the query process is close 
to its send rate. However, the throughput for the invoking process includes create an 
item ID and transfer an item ID, is dissimilar. The throughput for the invoking process is 
about half of the send rates, ranging between 15.8 and 21.7 TPS. Although the through-
put rate is low, but there is no failure in the results from capability tests.

Fig. 5  Back end of Blockchain Network’s web Interface
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From all the results obtained, it can be said that the blockchain model generates rel-
atively constant transaction data per second regardless of the different speeds of each 
transaction. However, the throughput is disparate based on its process. The throughput 
of the query process is similar to its send rate and has a higher value than the invoking 
process. This is happened due process of the query only skim through the data in block-
chain, while the invoking process is more difficult because the process involves creating 
new data in the blockchain.

Conclusions
Permissioned Blockchain is one of the newest technologies that are compatible with 
Halal Supply Chain, where administrators can determine the rights of each category of 
Halal Supply Chain participants, including what information is visible or what informa-
tion can be added to the Blockchain. Usually, Halal Supply Chain participants such as 
suppliers, distributors, wholesalers, and retailers only focus on their respective parts. 
Thus, the role of regulators is also needed to determine the rights that exist (so that the 
smart contract on the blockchain can be used in accordance with the case). Of course, 
the determination of these rights must also be done by consensus so that no one feels 
disadvantaged.

Fig. 6  Simulation result
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From the web interface created, there are no failure in the validity test when the invoke 
test in the Create an Item ID and Transfer an Item ID process and when testing the query 
in the Query an Item ID and Query all Item ID processes. In addition, the web interface 
was also successfully tested for thwarting the formation of a block in case of data input 
errors from the user. In the integration between the web interface with the server, the 
server can do the process as a provider of information and validator for the web interface 
when the invoke and query process on the web interface is running or an input error 
occurs on the web interface that causes the failure of making blocks on the Blockchain.

Finally, from the results of simulations performed on the Blockchain Network created, 
as we can see, Blockchain’s ability to secure transaction data is real because not all trans-
action processes fail. So, it is especially useful for securing transaction data about halal 
such as food, or drinks on the Blockchain. The “tampered-proof” capability also creates 
transparency for end users who want to examine the Halal Supply Chain process.

The implementation of blockchain architecture is important to improve the over-
all Halal Supply Chain. Blockchain could be executed without special requirements. 
Requirements for implementation of blockchain technology are personal computers that 
have Hyperledger architecture that is connected to a server.

In the future, the development of this research can be done using other Blockchain 
consensus methods such as Practical Byzantine Fault Tolerance and Zero Knowledge 
Proof. Other consensus methods can be simulated into the Blockchain Network system 
to see which Blockchain consensus performance could be improved. Some develop-
ments also can be done for Blockchain Network web interfaces, such as creating spe-
cial programs to combine interfaces made with smartphones to be used more easily or 
develop user login systems through interfaces to validate Blockchain Network users. The 
interface of the Blockchain Network can also be synchronized with a barcode system to 
facilitate users who want to check the traceability of goods (Track and Trace). Further-
more, Artificial Intelligent can also be integrated into the Blockchain Network to make 
data input or data processing smooth.
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